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Information and Feedback for 
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Some Informative Analogies

• Imaging (Inv. Probs.)
– Point-spread function
– Deconvolution
– Occlusion
– “Multi-frame” imaging
– Image registration
– Resolution Limits
– ….

• Communication
– Channel response
– Equalization
– Interference
– Multi-antenna systems
– Time-delay estimation
– “Capacity”
– ….
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Key Questions to Consider

What are the limits to the performance of 
1. The bandwidth-limited, noisy camera?
2. The processing algorithm applied to the 

sensor output?
Can we improve the overall performance by

1. Optimizing sensing and processing
together using the bounds above?

2. Actively probing the medium of interest so 
as to extract the most information from the 
ensemble sensor/processor?
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Resolution as a measure of 
information in images

Detailed Scene Low resolution images

Image(t1), Image(t2), ….

Cheap Camera

Forward Model
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Sensing : Resolution Limits of a 
Camera
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Imaging Closely-Spaced Point Sources

Noise

h(x,y)

Rayleigh’s limit isn’t.
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Performance Limit: Required SNR for 
Resolvability

• Point sources:

• Composite statistical hypothesis test:

Constants depends on the 
camera, the required false alarm
and detection rates. (Optimize!) 

• GLRT is the UMP test here.
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Many Extensions

• Multi-frame scenarios:
– Motion Estimation   

• More general camera models

• Perturbation Analysis.
– How does the scaling law change if model if 

there exists model mismatch? 
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Processing :Multi-frame Resolution 
Enhancement (Super-resolution)
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Resolution Enhancement Idea
• Given multiple low-resolution movingmoving images of a scene (a 
video), generate a high resolution image (or video).

•• DIVERSITYDIVERSITY: “Collect multiple views to gain spatial resolution”: “Collect multiple views to gain spatial resolution”
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• A simple model relating the low-resolution 
blurry image to the high resolution crisper 
image.
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The Mathematical Model

• Statistical Estimation problem
• The system is typically underdetermined and ill-conditioned.

• Need N2 frames for factor of N enhancement. 
• Model is uncertain, and sensitive to unknown parameters.
• Computational complexity is a major concern. 
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Insights from the CRB (optimize!)

• Given multiple frames of video, conventional 
motion estimation methods are not best:

• pairwise estimation 
• with a reference frame

• Justifies “bundle adjustment”: maximize mutual 
correlation between all combinations of frames. 
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Insights from the CRB

• Motion estimation and image upscaling
(interpolation) are deeply connected

– Can’t really do one without the other. 

• Specific selection of motions matters
– We can specify which are “best”
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Insights from the CRB

• More frames give diminishing returns. 
– How to make best use of your imaging resources?
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The Optimization Problem
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The Iterative Solution:

“Fast and Robust Multi-Frame Super-resolution”,
S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, accepted for publication in
IEEE Trans. on Image Processing, January 2004

• The cost function can be minimized using 
a 2-step approach.
– Fusion of frames: “shift and add” 
– Simultaneous deblurring and interpolation 
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Why this L1 prior? 

SINA SLIDE ON HISTOGRAMS
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Some Examples of SR
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Result from Webcam

Overcoming Sensor Limitations by Processing.Overcoming Sensor Limitations by Processing.
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MPEG Surveillance Video

Data Courtesy  Vigilant Technology
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Resolution enhancement of a face from a 
sequence captured by a surveillance camera

One Low-resolution Frame Output High-resolution Still Frame
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Resolution enhancement of a face from a 
sequence captured by a surveillance camera

One Low-Resolution Frame Output High-resolution Still Frame
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Detail Before

Data Courtesy  Vigilant Technology
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Detail After

Data Courtesy  Vigilant Technology
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Simultaneous Color Super-
Resolution/Demosaicing



Milanfar et al. EE Dept, UCSC

Resolution enhancement in color from a video 
sequence captured by a Pyro 1394 webcam

One Low-Resolution Frame Output High-resolution Still Frame
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Data Fusion of Color-filtered 
Images
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Dynamic Super-Resolution

• With all the pieces in place, Dynamic 
Superres becomes possible
– Video-to-Video
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Software
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Integrating Sensing and 
Processing
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n Spatial and temporal sampling trade-off in imaging 
devices due to physical limitations such as:

Light integration time
Sensor timing
Analog circuit delays

Tradeoffs and limitations
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n Adapt the sensor according to the scene for 
optimal usage of the available bandwidth and 
sensor capabilities

n Stream the data to a post processor to create high 
spatio-temporal resolution sequence

Tradeoffs and limitations

Operating point?

Sensor Operating Space

Frame Rate

Spatial # 
samples
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n What is an effective measure of true content (“edge-iness”) 
in an image that is
n Robust to noise
n Stable under aliasing
n Fast to compute

Measuring content effectively 
and efficiently

∑ ∑
−= =

+ −=
P

Pl

P

m

m
y

l
x

lm SSR
 , 0

1

||||)( xxx α

• Basically is the log-likelihood for the multiscale prior model used earlier

• Can also  be used in time direction.
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Basic feedback mechanism

Spatial
 Content

Estimation

Temporal
Content

Estimation

Operating point
computation

Adaptive
Imaging
Sensor

Adaptation feedback

Currently a lookup table
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Real Experiments
n A real time setup using Pyro IEEE1394 

camera.
n Powerful tool to develop algorithms 
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Imaging
Sensor

Enhanced
Resolution
Sequence

Control loop
Processor

Adaptation parameters

Control loop

Adaptive sensor

Spatial
Detail

Measure

Motion
Measure

What is next: Closing the loop




