

NON-COOPERATIVE TARGET IDENTIFICATION (NCTI) SIMULATION USING A MULTI-LEVEL MODEL INTEGRATION METHODOLOGY























Alex F. Sisti

Rome Lab/IRAE

Griffiss AFB

�


	The results of large-scale, monolithic battlefield simulation analyses have generally been coldly received, and with good justification. A scenario of realistic proportions could conceivably involve the modeling of hundreds of thousands of entities, dynamically interacting among themselves, and reacting to other (simulated) activity in their environment. Even given the substantial hardware improvements in the form  of larger, faster memories and exponential increases in processing power, it is still impossible to do an analysis at anything less than a grossly aggregated level. At the other extreme is the decision to accurately  and completely model every entity in the scenario such that its associated details are therefore incorporated into the scenario. This approach is obviously discarded in light of the size and complexity of the simulation, as well as cost, time and resource constraints implied by such an approach.



AN ANSWER



	So how then can we model a large-scale, complex software system which would allow us to accurately draw conclusions about detailed performance of a system component or technique within that overall system framework? With the rejection of the extremes (i.e., aggregate analysis based on coarsely represented entities versus completely detailed analyses), what remains is: 1) modeling the complete system from a variety of points of view, or 2) modeling only selected entities/areas of interest or 3) modeling the entire system, following a convention of multiple levels of representation, such that the entities are modeled at varying levels of detail, ranging from the top-level representation of the "essence" of the entity, to the lowest level, which would model the entity in great detail. This clearly has shown the most promise, and brings to bear a variety of technical, theoretical and practical aspects; including modularity, software reuse, object-oriented design, a hierarchy of models in a component library, a model management system for manipulating that library, and software engineering principles in general. It is also this method that should be followed by Rome Lab and ESD/XR in their respective simulation studies involving Non-Cooperative Target Identification (also called Hostile Target Identification). 

�


NON-COOPERATIVE TARGET IDENTIFICATION (NCTI)



	A discussion of the origins of, and the reasons for, simulation in support of Non-Cooperative Target Identification (NCTI) is beyond the scope of this memo; furthermore, it is assumed that the respective modeleers at Rome Lab and ESD's Project Model office have sufficiently agreed on their responsibilities and the role each plays in the overall Air Force tasking. Rather, this memo is to propose, at a high level, why and how a model integration approach should be employed in performing the required simulation studies.



NCTI MODELING



	In general, the overall goal of the NCTI program is to assess the feasibility and benefits of improving our aircrafts' long range identification capabilities and techniques, in order to a) better employ beyond-visual- range (BVR) weapons, b) avoid engagement of neutrals, c) reduce fratricide, d) identify enemy-controlled Western-made aircraft and e) better manage and control the air battle. It is immediately obvious that many, if not all, phases of the research and development activity needed for these assessments will involve Modeling and Simulation. Furthermore, it can be assumed that many, many facets of the air battle will need to be accurately modeled, in order to provide the most realistic assessments possible. Finally, from the discussions above, the conclusion must be drawn that a multi-level model integration approach should be followed.



	The initial thrust of the NCTI simulation activities at ESD/XR and at Rome Lab are similar in nature, but differ in scope. The NCTI-related tasking of the Project Model office calls for the assessment of NCTI solutions (or as they call it, Hostile Target Identification solutions) within a theater-level engagement, complete with all aspects and influences of Command, Control, Communications and Intelligence (C3I) being modeled as well. Rome Lab, on the other hand, will initially be investigating proposed advances to existing ESM equipment and techniques, and ultimately, developing and configuring models of those advanced capabilities for transition to ESD/XR's Modeling Analysis Simulation Center (MASC) facility. The primary purpose of this memo is to summarize and recommend the methodology to be followed by both organizations, so that 1) the overall system can be modeled as accurately  as possible, given the time, money and resource constraints facing both organizations, and 2) the incorporation of detailed engineering-level models into platform-level and theater-level scenarios can proceed as painlessly as possible.



WHY WOULD THE SAME MODEL BE NEEDED AT TWO DIFFERENT PLACES?



This is the question that comes up most often, and will probably surface many more times. In the case of the (fairly loosely) delineated NCTI simulation roles defined for Rome Lab and ESD, the specific question is: Why is it necessary to have TAC BRAWLER hosted and operating at both facilities? To fully understand the answer to that question, it is necessary to step back and look again at the multi-level modeling hierarchy embraced by the Air Force modeling and simulation community.



	In 1979, LtCol (then Major) Glen Harris introduced the concept of a "validated analytical hierarchy of models" in order to analyze force effectiveness within a simulation environment. In his thesis, he noted: "Neither a highly detailed approach nor a broad aggregate approach by itself is adequate to analyze the complex battlefield. Unless both approaches are used and carefully integrated, the results obtained will not provide the insight required to determine why one ensemble of systems should be preferred over another. An integrated approach must be designed to answer questions as to the causal relationships involved..." To that end, the following four levels were defined:



	Level I: System/Engineering Analysis This level primarily deals with individual systems or components; e.g., jammers, sensors, transmitters, etc. The analysis at this level is limited to, for example, a single piece of ESM equipment against a single target emitter.

	Level II: Platform Effects Analysis At this level, the evaluation focuses on the component being modeled, as associated with a platform; e.g., the modeling of an ESM suite installed on an aircraft. The effectiveness of the installed system is then evaluated in the context of a one-on-one or few-on-few analysis. Incidentally, this is where Rome Lab would be primarily involved, as far as model development; specifically, they would be concerned with locating/obtaining detailed component (level I) models and integrating them into a few-on-few scenario (TAC BRAWLER), to assess the system's performance within that context. 

	Level III:  Mission Effectiveness Analysis Analysis at this level assesses the contribution of (in this case) NCTI, to a combat mission environment, including other aspects such as C3I, time-sensitive maneuvers, and a defined enemy posture and doctrine. This is essentially where ESD/XR will be concerned; integrating results of the more detailed Level II models  (TAC BRAWLER, Mitre's Fusion Evaluation Testbed and others) into a Level III model (TAC SUPPRESSOR) to assess NCTI solutions within a C3I scenario.

	Level IV: Force Effectiveness Analysis This encompasses all of the activity associated with operations in the context of joint Army/Air Force/Navy campaigns against an enemy combined arms force, towards evaluating the contribution of (in this case) NCTI solutions in such a campaign. 



SOME THOUGHTS ON MODEL INTEGRATION



	In general, the fields of software reuse and model integration are so new that there is no set formula for deciding what components need to be modeled in finer detail, or how to integrate models of greater fidelity into an already existing software system. Actually, although model reuse and integration present some interesting design problems of their own, the basic issues directly mirror those facing designers of all simulation systems, whose job it is to try to capture the behavior of some real-world process or entity. Briefly, this design phase is characterized by an iterative approach (see Figure 1), consisting of the following steps: Step 1) the real-world process of interest is identified, Step 2) the behavior of the process is roughly modeled, by capturing and coding the knowledge of domain experts, Step 3) that computer model is executed, Step 4) the results go through a process of data reduction and analysis, and Step 5) the fidelity of the model is either increased or decreased. This reworked model then undergoes as many iterations of execution/analysis/modification as necessary; that is, to the point where the domain expert is satisfied with the results of the computer representation of the behavior of the real-world process (Step 6). This digital representation could be anything from a compute-intensive, highly complex interaction of hundreds of input and/or control parameters, to a one-line probabilistic draw.



	In either case -- original design and development of a simulation model or the integration (or redesign) of existing models -- the question is essentially the same: What portions of the system need to modeled in � EMBED Word.Picture.6  ���detail? Stated most simply, the answer is those elements which provide the greatest increases in the validity of the simulation results, while imposing the smallest degradation of performance of that simulation. This implies that there is some "break-even" or "crossover" point(s), arrived at by serious advanced study and planning, including discussions with domain experts (Step 2 above) to determine a) which elements are necessary and/or sufficient, b) which are useful, but whose inclusion might impose a less-than-acceptable performance penalty and c) which elements are just "window-dressing". More than likely, there will need to be a series of independent, statistically-driven experiments performed to converge on the "break-even" point; however, the theory and mechanics of experiment design and interpretation are far beyond the scope of this paper. Rather, the remainder of this memo will focus on of some of the ideas and lessons learned from past integration efforts, as well as presenting some visual and textual analogies that will hopefully foster a fuller comprehension of model integration.



SOME ANALOGIES IN THE REAL WORLD



	Unquestionably the easiest way to understand even the most abstract concept is to be able to visualize it; and similarly, the easiest way to visualize a difficult concept is to draw an analogy in the real world, and to map it to the conceptual problem space.



	Recalling our conundrum -- the integration of an existing, detailed component into a larger existing system, and how to resolve disparate levels of detail and the interface specifics involved in that integration -- it may be helpful to look at the most complex 'system' ever devised: the human body. As useful and efficient as this system may be, at times parts break down and must be reworked; and sometimes even replaced. We call this operation a transplant, and that is the analogy to be presented here.



	When the human system fails to perform efficiently, yielding less-than-satisfactory results, it undergoes a series of tests to isolate the problem. In the case of faulty components, most times they can be fixed. However, in some cases, a component is so irreparably damaged that it no longer adequately serves the purpose for which it was intended. At that point, there begins a series of discussions with the resident domain experts, as to a) whether or not that component is still essential to a satisfactory functioning of the system, b) the 'value-added' to the system, versus the 'cost' of bringing in a replacement component, c) the availability of replacement components, d) the level-of-detail of the replacement component (in essence, a determination of whether to "swap" the existing component with a similar component or to bring in a "new and improved" component), and finally e) given the decision has been made to remove the old component and replace it with the new one, what specific connections need to be made to integrate that component into the system?



	This is admittedly a rather ludicrous (and morbid) analogy, but it should shed a little light on the question of 'why integrate?'. As for the question 'how to integrate?', the analogy can again be used: if you cut something during the removal of a component, you'll need to reconnect it (or cap it) when you bring in a replacement. Note that in the case of merely "swapping" similar parts, reconnections are fairly straightforward; it essentially reduces to a one-to-one matchup of all loose ends of the system with those of the replacement component. The problem becomes more difficult when the component to be brought in is dissimilar in size, complexity or function, is built by someone other than the original builders of the system, is based on different specs and assumptions, etc. Ultimately, this kind of analogy points to the need for a standard to which 'spare parts' or improved components should adhere; but again, further discussions along those lines belong in a separate report.



THE 'SOFTWARE ZOOM' CONCEPT



	As stated earlier, we believe that the best way to model a large scale, complex software system is to model different portions of the system at different levels of detail, and to do such detailed analysis only when needed. A desirable situation would be to build a simulation framework which would allow individual portions of the simulation to be 'toggled' between a course representation of each entity being modeled, and a detailed representation of that entity, to be used only when a closer examination was warranted. Actually, this is not as new an idea as it sounds -- it's as old as the telescope! 



	Nearly everyone is familiar with the concept of 'zooming'; the act of expanding the view of a specific area of interest. In a similar manner, the act of varying the fidelity of a modeled entity for a more focused look into its workings can be described as a 'software zoom'. It is this ability to replace abstractly modeled entities with more and more detailed models that will ultimately allow validity to be inherited into large-scale software systems.



ANOTHER ANALOGY



	The benefits of having the ability to perform a software zoom should be obvious, but how is it accomplished, and what are the implications? Another analogy might be helpful here.



	For this analogy, our real world system is the continental United States, and our model of that system is a roadmap. Consider the woman planning a cross-country trip, starting in Los Angeles, ending in New York City, with a 2 day stopover in Topeka, Kansas to visit friends. Her primary goal is to get from the west coast to the east coast, as easily as possible. To successfully accomplish that goal, a roadmap comprised of all the main thoroughfares should be sufficient for most of her trip. However, she may not be familiar with Kansas, or the best way to get from the main highway to the smaller streets leading to her friends' house. Therefore, what she would likely do when she reaches the Kansas state line is to invoke a more detailed representation of that portion of the system -- a Kansas state map -- which would include not only the main thoroughfares, but also the smaller streets. In fact, when the time is right, she may have yet another model of the system -- a Topeka city map -- which provides the necessary details to bring her to her friends' house. Of course, when she leaves the house, then Topeka and finally, Kansas, the more abstract representation of the real-world system would be sufficient.



	What then, in our analogy, is required when 'zooming' in on our traveler's area of interest? Essentially, our removing the 'Kansas' portion of the coursely modeled system model is somewhat akin to removing the heart in the human system analogy; therefore, according to the formula proposed above, we'd need to determine what connections were severed, and resolve how best to handle their reconnection (or capping). In this case, it reduces to the woman noting what route she is on when she reaches the Kansas state line, locating that route on her Kansas state map, and continuing her journey, using that more refined model.



HOW THIS ALL RELATES TO NCTI MODELING AT ESD/XR AND ROME LAB



	Putting all these concepts together, it should now be possible to see how the operating environment should proceed at ESD's Modeling, Analysis and Simulation Center, as well as at RL's NCTI Modeling and Simulation Testbed. Figure 2 pictorially suggests (without specific implementation details) how the MASC modeleers might proceed with the integration of the Level II model TAC BRAWLER into their Level III model, TAC SUPPRESSOR. Similarly, Rome Lab will be integrating more detailed Level I (engineering level) components into TAC BRAWLER. Finally, Figure 3 shows how the two organizations are cooperatively working toward the same end, by incorporating a 'software zoom' capability within a hierarchy of models. Only by using these methods will we be able to introduce validity -- and therefore acceptance -- to a theater level simulation of specific NCTI influences on the endgame.

� EMBED Word.Picture.6  ����








� EMBED Word.Picture.6  ���

