Table Of Contents

Paragraph
 Page

Defense Information Infrastructure (DII)

Common Operating Environment (COE)

NT Advisory Group (NTAG)
Reserved Words
Draft Version 1.0

15 April 1998

Prepared by:

E. L. Krum

Forward
This document is submitted by the NT Advisory Group for review by DISA/JIEO Center for Computer Systems Engineering DII Computer Engineering Department and the DII COE Community.

Comments and recommendations for change may be forwarded for review and incorporation to:

NT Advisory Group

Attention: Eric L. Krum

Building 1704, Room 114

Hanscom AFB, MA 01731

Email: krumer@hanscom.af.mil

11.
Introduction

1.1
Background
1
1.2
Introduction to the issues:
1
1.3
Problem Statement:
1
1.4
Purpose
2
1.5
Scope
2
1.6
Outline
2
1.7
Related Documentation
2
2.
Version 3, I&RTS Reserved Word Requirements
3
3.
Current Joint Technical Architecture Reserved Words Requirements
6
4.
Current Microsoft Reserved Words Logo Program Requirements
7
5.
Preliminary Designed for Windows NT and Windows 98 Logo Program Reserved Words Requirements
10
6.
Comparison of Reserved Words Requirements
11
7.
Recommendations
14

1. Introduction

The Defense Information Infrastructure (DII) Common Operating Environment (COE) serves as an open and flexible architecture that promotes customized functionality and enhances the capability of the development community to create applications for DoD and Federal systems. The Defense Information Systems Agency (DISA) is responsible for the DII COE.

When the DII COE was introduced, a methodology for mission application development was implemented. A methodology that provides a flexible and customizable environment for developers while at the same time preserving configuration management and providing users a common operating environment. With the adoption of the Microsoft Windows New Technology (NT)(Operating Systems (OS) by the DII COE came some fundamental differences in OS services, file systems and file naming scheme’s from the prior UNIX based COE.

1.1 Background

On 13 February 1998 the NTAG published the NTAG Work Plan, assigning the tasks required to support implementing the NTAG’s recommendations to DISA for the use of NT in the COE. The task: “3.1, DII COE Reserved Words” concerned the implementation of Reserved Words and how they are to be accommodated into the NT registry database. Further, to review the current COE structure for changes required to accommodate the Microsoft Logo Program.

Research was conducted in the following areas:

· Current COE guidance in the Integration & RunTime Specification (I&RTS)

· User Interface Specifications for DISA

· Current NT guidance in the Windows Interface Guidelines for Software Design

· Guidance in the Windows NT and Windows 95 Logo Program

· Guidance in the Designed for Microsoft Windows Logo, for Windows NT and Windows 98

1.2 Introduction to the issues:

The process and guidance concerning the use of reserved words and symbols for COE NT systems is clearly addressed in Chapters 5 & 6 of the I&RTS. The Microsoft Logo Program does not address the subjects of reserved words or symbols. Microsoft does reference a list of core system files that applications may not replace or change. It can be deduced that these file names are reserved. Microsoft documentation does address reserved keywords for applications and development environments in great detail in order to avoid conflicts within an application.

1.3 Problem Statement:

The I&RTS provides a process to set and manage reserve words that ensures executables, shared libraries, and environment variables are unique. No corresponding process exists within the Microsoft Logo Program.

1.4 Purpose

The purpose of this paper is to determine if the DII COE process and run time procedures for managing Reserved Words, Symbols, and Files should be accommodated into the NT registry database. Further, to determine if the current DII COE run time guidance needs to be changed to accommodate the Microsoft Logo Program. This paper will perform a comparison between the current DII COE reserved word, symbols and file guidance and the Microsoft Windows NT Logo Program keywords guidance.

1.5 Scope

The scope of the tasks completed in the process of this evaluation of the Logo Program versus the current I&RTS directed approach was:

· Identify and describe the current DII COE I&RTS guidance as contained in version 3.0 of the I&RTS

· Identify and describe the current Joint Technical Architecture (JTA) guidance as contained in version 1 of the JTA

· Identify and describe the current Microsoft Logo Program as contained in the Windows NT and Windows 95 Logo Program

· Identify and describe the current Microsoft Logo Program as contained in the Windows NT 5.0 and Windows 98 Logo Program

1.6 Outline

Section 2 provides an overview of the DII COE I&RTS guidance for reserved words. Section 3 presents an overview of the JTA guidance for reserved words. Section 4 presents an overview of the Microsoft Logo Programs guidance for reserved words. Section 5 presents an overview of the preliminary Microsoft Logo Program for the version 5.0 of NT and Windows 98. The data presented in each section is a synopsis of the applicable document. Extracts of the applicable paragraphs and sections from each document are included in an appendix. Section 6 presents the comparison of the reserved words guidance from DISA and Microsoft. Section 7 presents the NT Advisory Group’s recommendations.

1.7 Related Documentation

Designed for Microsoft® Windows NT® and Windows® 95, Logo Handbook for Software Applications, Version 3.0b, March 3, 1998

Designed for Microsoft Windows Logo Handbook for Software Applications for Windows NT and Windows 98, Microsoft Corporation, Preliminary documentation

Defense Information Infrastructure (DII), Common Operating Environment (COE), Integration and Runtime Specification (I&RTS), Version 3.0, July 1997. Joint Interoperability and Engineering Organization, Defense Information Systems Agency, CM-400-01-0401

Defense Information Infrastructure (DII) Common Operating Environment (COE), How To Segment Guide, Version 4.0, 30 December 1996, Joint Interoperability and Engineering Organization Defense Information Systems Agency, CM-400-130-01

The Windows Interface Guidelines for Software Design, Microsoft Press, 1995

User Interface Specifications for the Defense Information Infrastructure (DII), Version 3.0, February 1998, CM-400-18-05

Microsoft Knowledge Article Q100843, Environment Variables in Windows NT, March 24, 1997

2. Version 3, I&RTS Reserved Word Requirements

The I&RTS (Appendix E) addresses reserved word requirements through reserving:

· Segment directory names

· Segment prefixes

· Environment variables

Two chapters address reserved segment prefixes, symbols and files. Chapter 5 covers UNIX specific and common words between UNIX and NT. Chapter 6 addresses PC specific issues.

Each COE segment is assigned a unique subdirectory name and a unique segment prefix. The segment prefix is from 1 to 6 characters long and is used for naming:

· Segment environment variables

· Public and shared files

· Public API’s

Segment subdirectory name’s and prefix’s

A segment subdirectory name’s and prefix’s are issued by DISA and are declared as reserved words in the I&RTS. The COE allows segments to share the same segment prefix. Aggregate segments are a collection of segments that are treated as an indivisible unit. One segment is designated as the parent segment and the remaining segments are designated as children. During installation the user views only the parent segment. Child segments are not displayed as selectable items, but are automatically installed with the parent. Parent and child segments can share the same prefix. For segments that share segment prefixes, it is up to the developer to ensure that file names and environment variables do not have naming conflicts.

A list of the known reserved segment prefixes is provided in Table 5-1 in the I&RTS. A current list of prefixes is available through the DII COE home page.

Paragraph 6.4, states that the segment prefixes listed as reserved in Chapter 5 are also reserved for the NT-based COE. The following segment prefixes are reserved and are specific to the NT based COE:

NT

Generic NT Segments

WIN

Generic Windows segments

WIN95

Windows 95 segments

INNT

Windows NT segment for 80x86 platforms

Environment variables

Environment variables used by COE operating systems, and by the COE infrastructure to manage user accounts and groups are reserved in the I&RTS. Environment variables are normally set:

· Automatically by the operating system during installation

· During a user’s login process by the operating system

· Automatically by a segment during installation

Segments may not alter operating system environment variables or other segment environment variables except as permitted by environment extension files (e.g., extending the path variable). A list of DII COE environment variables is provided in Table 5-2 in the I&RTS.

UNIX segments that provide executables must ensure that the bin subdirectory is included in the search path. Segments must append the bin directory location to the end of the path variable, not the beginning. Segments may not insert the current working directory into the search path.

All reserved environment variables listed in Chapter 5 of the I&RTS are also reserved in the NT-based COE. The following environment variables are listed in paragraph 6.4 are stated to be UNIX specific and may not be set on an NT COE system:

DISPLAY XE "DISPLAY"
LD_LIBRARY_PATH XE "LD_LIBRARY_PATH"
SHELL XE "SHELL"
TERM XE "TERM"
TZ XE "TZ"
XAPPLRESDIR XE "XAPPLRESDIR"
XENVIRONMENT XE "XENVIRONMENT"
XFONTSDIR XE "XFONTSDIR"
Chapter 6 expands upon setting the path environment variable for NT COE segments, it states; “Segments, excepting COTS segments and in some cases shared DLLs, shall not set the Windows path environment variable. If the segment provides shared DLLs for use by other software, and if there is no alternative way for that software to locate the DLLs, the segment may add a directory to the path for those DLLs.”

Under miscellaneous, the I&RTS directs; “segments shall not add a global “home” environment variable to the affected account group XE "account group" .” No explanation or break down for this directive was found in Chapter 6. It is inferred that segments with related account groups may not create an environment variable for a shared group directory/folder.

Environment variables USER_HOME XE "USER_HOME" , USER_DATA XE "USER_DATA" , and USER_PROFILE XE "USER_PROFILE" are set by the appropriate account group XE "account group" and have the meaning described in Chapter 5. They are provided for backwards compatibility and should not be used in the NT-based COE. As with UNIX applications, segments shall use a Preferences API to locate user-related data.

Current Joint Technical Architecture Reserved Words Requirements

No direct reference to reserved words is provided in the JTA. The JTA states that applications must be I&RTS compliant.

3. Current Microsoft Reserved Words Logo Program Requirements

Microsoft refers to reserved words as “Keywords”. There is no mention of reserved words, symbols or keywords under the Microsoft Logo Program. A reference to a list of Core files that developers may not over write is provided in the Logo handbook. NT core files are files required by the NT kernel and infrastructure to support applications and system operations. Core files are installed during the OS installation and are provided during OS upgrades, e.g., DirectX and Direct3D. The list of core files is dynamic, as such a current list of core files is maintained by Microsoft and can be downloaded from the Microsoft home page.

The Windows NT Operating System (OS) uses three levels of environment variables:

1. System environment variables

2. User environment variables

3. AUTOEXEC.BAT environment variables

System level environment variables are set during installation and their values can be changed by administrators and developers using the Windows API. User environment variables can be set by users and take precedence over system environment variables. No official listing of NT environment variables could be located. An article (Appendix H) in the knowledge base addressed the three types of variables. However, the article stated that not all system environment variables were covered in the article. Research has determined that the below listed system and user environment variables are common between the NT platforms:

· COMPUTERNAME

· ComSpec

· HOMEDRIVE

· HOMEPATH

· HOMESHARE

· LOGONSERVER

· NUMBER_OF_PROCESSORS

· OS

· Os2LibPath

· Path

· PROCESSOR_ARCHITECTURE

· PROCESSOR_IDENTIFIER

· PROCESSOR_LEVEL

· PROCESSOR_REVISION

· PROMPT

· SystemDrive

· SystemRoot

· TEMP

· USERDOMAIN

· USERNAME

· USERPROFILE

· windir
The above environment variables are defined in Appendix G.

The AUTOEXEC.BAT environment variables are set in the AUTOEXEC.BAT file and are used to create the Windows NT environment.

The Logo Program reserves neither keywords nor environment variables. While not referenced in the Logo Program, the Windows NT Operating System (OS) does reserve the following file names:

· CON

· AUX

· COM1

· COM2

· COM3

· COM4

· LPT1

· LPT2

· LPT3

· PRN

· NUL

These file names are file handles used by the OS to access hardware resources available on most PCs. Use of these names by a segment would cause conflicts with printing, serial port communications, and keyboard input. An attempt to use one of the device names listed above results in a systems error message. However, lists of reserved words and keywords are readily available for specific applications and development environments from their respective development companies.

The Logo Program requires that application information be maintained in the registry. This information is be used by the Add/Remove Programs Control Panel to provide a central place for information about each application. The registry values in the table below should be written under the following key:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall\NameofApplication

Name of Value
Type
Contains

DisplayName
REG_SZ
Display Name of Application.

UninstallPath
REG_SZ*
Full path to the Application’s uninstall program.

ModifyPath
REG_SZ*
Full path to the Application’s setup/modify program.

InstallLocation
REG_SZ*
Full path where the Application is located (folder or *.exe).

InstallSource
REG_SZ*
Location where the Application was installed from.

DisplayVersion
REG_SZ
Displayed version number of Application.

VersionMajor
DWORD
Major Version Number of Application.

VersionMinor
DWORD
Minor Version of Application.

Publisher
REG_SZ
Publisher/Developer of Application.

ProductID
REG_SZ
Product ID of installed Application.

RegOwner
REG_SZ
Registered owner of Application.

RegCompany
REG_SZ
Registered company of Application.

HelpTelephone
REG_SZ
Telephone number for support/help.

HelpLink
REG_SZ*
Full path of Helpfile or Help URL for Application.

URLUpdateInfo
REG_SZ*
URL of Update Informaton for Application.

URLInfoAbout
REG_SZ*
URL that provides a link to the publisher’s home page or the application’s home page.

The Windows Interface Guidelines for Design manual does not address the subject of reserved words, or keywords. The manual provides examples of registry keys and subkeys that must be unique but there is no methodology presented to ensure uniqueness. It is left up to the developer to ensure keys, environment variables, or file names are unique, when required.

To minimize installation and operational problems with file name and environment variable conflicts, the Logo Program has recently added several new requirements. Applications must default to a directory under “drive:\Program Files”. The install program must query the registry for this directory incase a user has renamed the Program Files directory. Additionally application DLLs may not be installed under the system root.

The Logo Program provides recommendations that will become program requirements when the next Logo Program version is released. The current Logo Program recommends that applications do not write anything to the \system32 directory. Also, recommended is; if updated core files are required the application should include a self-extracting EXE file from Microsoft which handles installation of upgraded components.

4. Preliminary Designed for Windows NT and Windows 98 Logo Program Reserved Words Requirements

The preliminary Logo Program for Windows 98 and NT contains the same guidance as the Windows 95 Logo Program. Recommendations provided under Windows 95 are now requirements under Windows 98 Logo Program. There are no requirements relating to keywords or related guidelines in the draft Logo Program.

5. Comparison of Reserved Words Requirements

The Microsoft Logo Program does not address the subject of reserved words, it is up to the individual developer to avoid conflicts from occurring. In comparison the DII I&RTS's run time guidance provides clear guidance on reserved words and a list of reserved words. This reserved word list consists of:

· Segment directory name's

· Segment Prefix's

· Environment variables

A segment’s directory name and prefix are centrally controlled and assigned by DISA. A current list of reserved words is available on the DISA web server. Developers can perform a search to see if there is a name conflict before asking DISA for issuance of a new name and prefix. No corresponding application naming convention exists for Windows NT. The Microsoft Logo Program leaves resolving naming conflicts up to the developer. However, Microsoft does maintain a list of core files, that is downloadable, to ensure there is no conflict with NT system files. To assist users in avoiding naming conflicts between programs installed on a system, the Logo Program has initiated several actions to minimize conflicts by restricting the installation of segment files into the root or system32 directories. Further, using the registry to maintain directory names where files are located avoids conflicts because programs go directly to the directory to load the file. This avoids the problem where the file, with its directory, listed in the path being executed rather then the desired file with the same name but located later in the search path.

Reserved environment variables pertaining to NT based COE systems are listed in Chapters 5 and 6 of the I&RTS. IAW the I&RTS, segment developers may not use or change, system or other segment environment variables except through environment variable extension files. There is no reference to environment variables in the Logo Program.

Historically, the COE environment variables are based on the UNIX operating systems requirements. Windows NT was developed after UNIX and as a result has different names for equivalent COE environment variables. Below is a list of COE environment variables that the I&RTS states pertains to Windows NT COE systems and the corresponding Windows NT environment variable:

I&RTS

Standard NT

COE_SYS_NAME
None

COE_TMPSPACE
None

DATA_DIR
None

HOME
HOMEPATH

HOMEDRIVE

HOMESHARE

INSTALL_DIR
InstallSource (registry)

LOGNAME
USERNAME

MACHINE_CPU
PROCESSOR_ARCHITECTURE

PROCESSOR_IDENTIFIER

PROCESSOR_LEVEL

PROCESSOR_REVISION

MACHINE_path
PATH

SHELL
COMSPEC

SYSTEM_ROOT
SystemRoot

WinDir

TMPDIR
TEMP

USER_DATA
None

USER_HOME
None

USER_PROFILE
USERPROFILE

None
USERDOMAIN

None
COMPUTERNAME

None
PATHEXT

None
SystemDrive

None
OS

The I&RTS states the SHELL variable is a UNIX only variable, with no corresponding NT variable. However, both UNIX and NT support running thirdparty sub-systems; what is more commonly called a shell. Windows NT does have the capability of running different shells on top of the kernel, e.g., POSIX and OpenNT. The environment variable used by NT to identify the active shell is called COMSPEC. The Windows NT variable SYSTEM_ROOT was changed to SystemRoot and then to WinDir. The I&RTS references the old NT environment variable.

The Logo Program requires information on directory and file locations for NT applications to be maintained in the registry.

The following three COE environment variables do not correlate to an NT variable because they pertain to COE based entities.

Environment Variable

COE Use

COE_SYS_NAME
Type of system, i.e., GCCS

COE_TMPSPACE
Directory used for temporary files used during the segment installation

DATA_DIR
/h/DATA, root COE data directory

The COE HOME environment variable contains the current COE user login directory.

Windows NT has three environment variables that are used to designate the current user directories.

Environment Variable

NT Use

HOMEDRIVE
Drive letter designated for the users home directory

HOMEPATH
Default path under the HOMEDRIVE

HOMESHARE
UNC to the users mountable home directory on a remote server

\\<server name>\<share name>

The three NT user related environment variables listed above could be used to represent the COE users local and global directories.

Windows NT has five standard environment variables that do not correlate to COE environment variables. USERDOMAIN is the name of the NT domain the computer is a member of. The domain is used to manage security within a computer system and what functions the system and the systems users are authorized to perform. The UNIX COE uses NIS+ to track a systems name and what DNS domain the system belongs to. NT domain level security functions are managed using Group ID’s within NIS. PATHNAME, SystemDrive, and OS do not have a related UNIX environment variable.

Environment Variable

NT Use

USERDOMAIN
Name of NT Domain the current user belongs to. USERDOMAIN remains in effect for NT 5.0 but represents the current users active directory Realm.

COMPUTERNAME
Name of the computer broadcast over the Windows network

PATHEXT
File name extensions for executable files, e.g., .COM; .EXE; .BAT; .CMD

SystemDrive
Drive letter the Windows OS is installed on

OS
Name of the current windows operating system

6. Recommendations

The purpose of this paper was to make recommendations concerning the implementation of Reserved Words and how the are to be accommodated into the NT registry. How the current COE structure should be modified to accommodate the Microsoft Logo Program was also evaluated. The below recommendations should provide the means for coordinating reserved word usage and management within the DII COE versus the Microsoft Logo Program.

A. DISA should continue the centralized DII COE reserved word lists on their web site

The searchable segment prefix list maintained by DISA makes developer file name research significantly easier and developers can be assured file names will not conflict with other COE segments.

B. DISA should add a list of approved environment variables to their web site

To facilitate avoiding developer caused conflicts with older environment variables, a list of approved environment variables should be maintained by DISA. An additional benefit would be the ability of developers to view what environment variables are available for use for naming their segments.

C. The NT Advisory Group and DISA COE Engineering Office should meet to resolve environment variable differences

The standard set of Windows NT environment variables should be used on NT COE based systems along with the additional required registry entries that track application/segment information. COE specific environment variables or COE specific registry entries must extend the standard NT environment variables set. The COE variables that directly correlate to standard NT variables or registry entries should be deferred to the standard NT variable or registry entry.

D. Microsoft should add a list of operating system related reserved keywords to the developers network, and a list of reserve NT environment variables in the Logo Program handbook

The requirement for developers to be responsible for resolving all naming conflicts is reasonable given the diversity of the market place. Recent Logo Program rule changes on locating application files and closing the system directories will also help reduce conflicts. However, environment variables that the NT OS uses should be referenced in the Logo Program as being reserved and the variables should be listed on the developers web site.

Definitions

Core Components
Core components are defined as DLLs that application developers have come to depend on for the proper functionality of their applications. Reverting to an older version or to an incorrectly implemented version may break many third party applications. In general terms, the core components are USER, GDI, and KERNEL. Core components are files which are installed by the operating system during a full installation, or which are considered operating system upgrades (for example, DirectX™, Direct3D™). This includes such things as DLLs which are installed by applets. This list is dynamic. For the most up to date list of core components for Windows NT and Windows 95, see http://www.microsoft.com/windows/thirdparty/winlogo/.

6.2.3.
System & Shared Components

Required:
Applications must not overwrite core components with older versions of the components. The vendor must check http://www.microsoft.com/windows/thirdparty/winlogo.htm for the most up-to-date and complete list of Windows 95 and Windows NT core components.

Required:
The vendor must run Pretest the application using VeriTest's Install Analyzer & submit the report results with the Vendor Questionnaire. Improper handling of core and shared components is the number one reason applications fail Logo testing on the first try and must retest. The Install Analyzer provides automated testing of compliance in this area. The Install Analyzer can be found at http://www.veritest.com/installation_analyzer.htm

Recommended:
It is strongly recommended that applications do not write anything to the \system32 directory. On Windows NT 5.0 the OS will support a mode in which this directory will be read-only and unavailable to applications & installers. This will be part of the Zero Administration Windows effort to reduce DLL conflicts and other shared component problems.

Recommended:
It is strongly recommended that if your application requires updated system DLLs or other core components you must ship a self-extracting EXE from Microsoft which will handle installation of these components. Applications are strongly discouraged from installing system components or install into Windows\system32 by any other means than Microsoft provided service packs. (MS will distribute all new DLLs by means of service packs only. Vendors should distribute self-extracting EXEs from Microsoft rather than the latest DLLs.)
6.8 UNC/LFN Support
Question marks anywhere in the file name must prevent the file from being saved. No error message needs to be displayed.

The characters within the quotation marks “ + , ; = [] ” must be supported anywhere in the name, including leading and trailing. These should not cause any error conditions. (Note: support for leading and trailing periods has been dropped from the Logo requirements.)

Pretesting UNC and LFN Support

Test direct network browsing with UNC paths

Open a file and then use the Save As command to save the file to a standard server with a Long File Name (LFN) and with various Uniform Naming Convention (UNC) paths (for example, \\ServerName\MySubdirectory\MyLongFileName).

SYMBOL 183 \f "Symbol" \s 11 \h
It should be possible to save and retrieve files without specifically referring to a network drive letter.

Proper handling of LFNs

Basically, LFN handling must do the following:

SYMBOL 183 \f "Symbol" \s 11 \h
Allow plus signs (+), commas (,), semicolons (;), equal signs (=), and square brackets ([]) anywhere in the file name.

SYMBOL 183 \f "Symbol" \s 11 \h
Not save leading or trailing spaces. You can test for this by removing the name inserted into the Save As dialog box, pressing the spacebar several times, typing "test", and then pressing the spacebar several more times. Your program should strip the spaces and add an extension, returning the file name "test.ext" (not " test .ext").

SYMBOL 183 \f "Symbol" \s 11 \h
Not save question marks.

SYMBOL 183 \f "Symbol" \s 11 \h
Support 255 characters (including the path and extension).

SYMBOL 183 \f "Symbol" \s 11 \h
Save to a UNC path, such as \\Server\Directory\Filename.

SYMBOL 183 \f "Symbol" \s 11 \h
Add an extension before saving a file. For example, "test." should be saved as "test.ext".

Testing proper LFN handling

Test each of the allowed file names in the following list. Note that the pound sign (#) in the names below is intended to represent a spacebar space:

test

test#test#test#test

test#1234567890[up to a total of 260 characters]
You should also test the following list of file names, which should be saved to the hard disk as indicated. Again, the pound sign (#) in the names below is intended to represent a spacebar space, and ext is intended to stand for the file extension that is appropriate to your application:

test (should be saved as "test.ext")

###test (should be saved as "test.ext")

test### (should be saved as "test.ext")

test#;#+#,#=#[#] (saved as "test#;#+#,#=#[#].ext")

\\folder#one\folder#two\folder#three\folder#four\file

Query the Registry for Directory Names

Requirement (Designed for Microsoft® Windows® Logo)

Your application should not assume that directory names such as "My Computer" will be in English or will be unchanged by the user. Your application should query the registry directly to obtain the proper language-specific directory names.

Vendors should be aware that English versions of their applications might be installed onto non-English versions of Windows. In this instance, a search for the English language directory string "Program Files" would not be successful and would result in a failed installation.

For many standard folders, a qualified path can be obtained by calling the SHGetSpecialFolderLocation function with the appropriate CSIDL constant. The following standard folders are accessible in this way.

Standard Folder
CSIDL Constant Name
Hex

Alternate Startup folder (All Users profile, DBCS)
CSIDL_COMMON_ALTSTARTUP
0x1e

Alternate Startup ([user], DBCS)
CSIDL_ALTSTARTUP
0x1d

Application Data ([user] profile)
CSIDL_APPDATA
0x1a

Control Panel virtual folder
CSIDL_CONTROLS
0x03

Cookies folder
CSIDL_COOKIES
0x21

Desktop (namespace root)
CSIDL_DESKTOP
0x00

Desktop folder (All Users profile)
CSIDL_COMMON_DESKTOPDIRECTORY
0x19

Desktop folder ([user] profile)
CSIDL_DESKTOPDIRECTORY
0x10

Favorites folder (All Users profile)
CSIDL_COMMON_FAVORITES
0x1f

Favorites folder ([user] profile)
CSIDL_FAVORITES
0x06

Fonts virtual folder
CSIDL_FONTS
0x14

History folder
CSIDL_HISTORY
0x22

Internet Cache folder
CSIDL_INTERNET_CACHE
0x20

Internet virtual folder
CSIDL_INTERNET
0x01

My Computer virtual folder
CSIDL_DRIVES
0x11

Network Neighborhood root
CSIDL_NETWORK
0x12

Network Neighborhood directory
CSIDL_NETHOOD
0x13

Personal folder ([user] profile)
CSIDL_PERSONAL
0x05

Printers virtual folder
CSIDL_PRINTERS
0x04

PrintHood folder ([user] profile)
CSIDL_PRINTHOOD
0x1b

Programs folder (under Start menu in All Users profile)
CSIDL_COMMON_PROGRAMS
0X17

Programs folder (under Start menu in [user] profile)
CSIDL_PROGRAMS
0x02

Recent folder ([user] profile)
CSIDL_RECENT
0x08

Recycle Bin folder
CSIDL_BITBUCKET
0x0a

SendTo folder ([user] profile)
CSIDL_SENDTO
0x09

Start menu (All Users profile)
CSIDL_COMMON_STARTMENU
0x16

Start menu ([user] profile)
CSIDL_STARTMENU
0x0b

Startup folder (All Users profile)
CSIDL_COMMON_STARTUP
0x18

Startup folder ([user] profile)
CSIDL_STARTUP
0x07

Templates folder ([user] profile)
CSIDL_TEMPLATES
0x15

Folders can also be located using the following Windows NT environment variables.

Standard Folder or Location
Environment Variable

System drive
%SystemDrive%

System root directory
%SystemRoot%

Windows folder
%windir%

Program Files folder
%ProgramFiles%

User's profile folder
%UserProfile%

User's temporary folder
%Temp%

Access to specific user profile folders, such as Application Data, should be obtained through SHGetSpecialFolderLocation rather than by relying on the standard English folder name (as in %UserProfile%\Application Data\).

Chapter 10, System Naming Conventions
Windows provides support for filenames up to 255 characters long. Use the long filename when displaying the name of a file. Avoid displaying the filename extension unless the user chooses the option to display extensions or when the file type is not registered.

Note
The system automatically formats a filename correctly if you use the SHGetFileInfo or GetFileTitle function. For more information about these functions, see the documentation included in the Win32 SDK.

Because the system uses three-letter extensions to describe a file type, do not use extensions to distinguish different forms of the same file type. For example, if your application has a function that automatically backs up a file, name the backup file Backup of filename.ext (using its existing extension) or some reasonable equivalent, not filename.bak. The latter implies a change of the file's type. Similarly, do not use a Windows filename extension unless your file fits the type description.

Long filenames can include any character, except the following.

\ / : * ? < > | "

When your application automatically supplies a filename, use a name that communicates information about its creation. For example, files created by a particular application should use either the application-supplied type name or the short type name as a proposed name — for example, worksheet or document. When that file exists already in the target directory, add a number to the end of the proposed name — for example, Document (2). When adding numbers to the end of a proposed filename, use the first number of an ordinal sequence that does not conflict with an existing name in that directory.

When saving a file, make certain you preserve the creation date of the file. For simple applications that open and save a file, this happens automatically. However, more sophisticated applications may create temporary files, delete the original file, and rename the temporary file to the original filename. In this case, the application needs to copy the creation date as well from the old file to the new, using the standard system functions. Certain system file management functionality may depend on the correct creation date.

When you create a filename, the system automatically creates an MS-DOS filename (alias) for a file. The system displays both the long filename and the MS-DOS filename in the property sheet for the file.

When a file is copied, use the words "Copy of" as part of the generated filename — for example, "Copy of Sample" for a file named "Sample." If the prefix "Copy of" is already assigned to a file, include a number in parentheses — for example, "Copy (2) of Sample". You can apply the same naming scheme to links, except the prefix is "Link to" or "Shortcut to."

It is also important to support UNC paths for identifying the location of files and folders. UNC paths and filenames have the following form.

\\Server\Share\Directory\Filename.ext
Using UNC names enables the user to directly browse the network and open files without having to make explicit network connections.

Wherever possible, display the full name of a file (without the extension). The number of characters you'll be able to display depends somewhat on the font used and the context in which the name is displayed. In any case, supply enough characters such that the user can reasonably distinguish between names. Take into account common prefixes such as "Copy of" or "Shortcut to". If you don't display the full name, indicate that it has been truncated by appending an ellipsis to the end of the name.

You can use an ellipsis to abbreviate path names, in a displayable, but noneditable situation. In this case, include at least the first two entries of the beginning and the end of the path, using ellipses as notation for the names in between, as in the following example.

\\My Server\My Share\...\My Folder\My File

When using an icon to represent a network resource, label the icon with the name of the resource. If you need to show the network context rather than using a UNC path, label the resource using the following format.

Resource Name on Computer Name
13.3.4.3 Information Labeling
The URL for the application defines its Web address, with the path and file portions of the address uniquely identifying each page in the application. Users frequently rely on these addresses to understand the structure of the information they are viewing. As a result, the application defines its URLs so they have readable names that reflect the nature of the information they contain. The application uses only lower-case characters in its URLs so as to minimize the risk of errors when users type an address. To ensure portability across platforms, the application includes the appropriate file extension for the content type (e.g., .gif for GIF files), uses only alphanumeric characters and underscore, hyphen, and period in its file names, and limits filename length to less than 32 characters.

NOTE: Filenames are not limited to MS-DOS format (8.3) and length since all NT systems will be formatted using NTFS, FAT is not to be used?

5.1 Disk Directory Layout

Developers may not directly alter or create files outside of their assigned segment directory. DII compliance XE "DII compliance" mandates strict adherence to this directive, with the following exceptions:

1. Temporary files may be placed in the operating system temporary
 directory. For UNIX, this is the directory pointed to by TMPDIR XE "TMPDIR" (typically /tmp). For NT, use the applicable Windows API to locate the temporary directory. However, disk space is limited so developers must use this temporary directory sparingly and shall delete temporary files when an application is done.

2. Segments may place data files in the /h/data directory, and are required to do so for shared data (see subsection Error! Reference source not found.).

3. Operator-specific data files shall be placed in subdirectories underneath /h/USERS (see subsection 0).

4. Files may be added to the /h/TOOLS directory. This is a community directory for tools useful in the development process. Segments shall not place any files in this directory which are required at runtime since this directory is not installed at operational sites. This directory is described in subsection Error! Reference source not found..

5. Segments may request that the COE tools modify community files XE "community files" during the installation process.

6. Segments may issue a request to modify a file to the segment which “owns” the file. This shall be done through use of, and only through use of, published APIs.

As software is loaded onto the system, the /h disk partition may eventually run out of disk space. The COE installation software will automatically create a symbolic link
 to preserve the logical structure shown in Error! Reference source not found., and delete the link when segments are removed. Hence, Error! Reference source not found. represents a logical view, not a physical view, of file and directory locations. Due to the potential need to relocate segments at installation time based on available disk space, DII-compliant segments must meet the following requirements:

· Segments shall use relative pathnames instead of absolute pathnames.

· Segments which use symbolic links to point to files contained within the segment shall use relative pathnames for the link.

· Segments which use symbolic links to community files XE "community files" may use absolute pathnames as long as (a) the segment can determine the community file’s location at install time and (b) the segment can resolve linking to a community file which may itself be a symbolic link.

· (UNIX) Segments which add an environment variable to the account group XE "account group" ’s global runtime environment for locating files within the segment shall use a single “home” environment variable. Environment variables of this nature are normally required only when the segment files are to be accessible by other segments. Addition of the “home” environment variable is done by the segment installer through use of extension files and must not be done directly by the segment.

To illustrate the last requirement, consider a segment that provides a continuous readout of time-until-impact for a missile. Assume the segment’s assigned directory XE "assigned directory" is MissleTDA and it’s segment prefix XE "segment prefix" is MSLE. The ReqrdScripts XE "ReqrdScripts" segment descriptor (see subsection Error! Reference source not found.) is used to add the following to the account group XE "account group" ’s .cshrc file:

setenv MSLE_HOME
/h/MissleTDA
MSLE_HOME is called the segment’s home environment variable XE "home environment variable" . Static data within the segment can be referenced by $MSLE_HOME/data while executables may be referenced by $MSLE_HOME/bin. This technique of using relative pathnames means that segments can be easily relocated at development, integration, or installation time by modifying a single environment variable.

The last requirement stated above does not apply to environment variables defined for use purely within the software development environment. The COE requires that the runtime environment be separated from the development environment. This is typically done by separating environment variables and other settings into physically separate files. The development environment is not present during runtime for the operational system.

Also carefully note that the last requirement stated above applies only to the account group XE "account group" ’s global runtime environment, not a local runtime environment. When a segment executable is launched, it inherits the environment established by the account group template. It may then add to its local runtime environment through techniques equivalent to the C putenv()function.

The time-to-impact example illustrates additional COE requirements regarding definition of a home environment variable XE "home environment variable" .

· A segment home environment variable XE "home environment variable" shall point to the segment’s assigned directory XE "assigned directory" , not a lower level subdirectory (e.g., point to the directory /h/MissleTDA and not to the directory /h/MissleTDA/Scripts).

· (UNIX) A segment home environment variable XE "home environment variable" , if added to the global environment, shall be added through an environment extension file (see ReqrdScripts XE "ReqrdScripts").

· If a segment home environment variable XE "home environment variable" is required, it shall be named segprefix_HOME, where segprefix is the segment prefix XE "segment prefix" . Segments which use the same segment prefix must ensure that only one segment defines a home environment variable. This requirement assures that home environment variables are uniquely named between segments.

· Segments shall not define a global environment variable that can be derived from an already-defined environment variable. For example,

setenv MSL_DATA

$MSL_HOME/data

is redundant and is therefore not allowed because the expression $MSL_HOME/data can be used wherever $MSL_DATA can be used.

· Segments shall not use the “~” character (or NT equivalent) to specify relative pathnames in the runtime environment, whether to define a home environment variable XE "home environment variable" or any other environment variable.

UNIX allows statements of the form

source ~/Scripts/.cshrc.tst
in .cshrc, .login, and similar scripts. The “~” character is substituted at run time with the name of the home login directory (as defined in the /etc/passwd file). Suppose this statement were contained in a .cshrc file and, to prevent making duplicate copies and managing updates to this file, another segment wishes to use the UNIX source command to include this .cshrc file in its own environment. Any segment wishing to source the example .cshrc file must duplicate the same disk directory path structure (e.g., must have a Scripts subdirectory underneath the home login directory) and must have a file called .cshrc.tst underneath the Scripts subdirectory. This approach is problematic in the runtime environment because the login home directory XE "home directory" is different for every operator, and leads to difficulties in sharing environment settings.

Note:
Developers should minimize the use of environment variables whenever possible. The amount of memory the operating system makes available to store environment variables is limited and is therefore a scare system resource. Also, developers should bear in mind that environment variables with shorter names require less memory to store than environment variables with longer names.

5.2 .2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate subdirectory on the disk for storing operator-specific data items. The structure underneath this directory is created and managed automatically as accounts are added and deleted by the Security Administrator software. Developers who require access to any file maintained here (last profile selected, location of operator preferences files, etc.) shall use COE-provided APIs to access them and not rely upon a particular directory or file structure.

All users with valid accounts will have a subdirectory underneath /h/USERS. The subdirectory name will have the same name as the login account name. As shown in Figure 7-1, operator accounts may be global or local in scope. A local account XE "local account" is platform-specific, whereas global account XE "global account" s are available from any platform on the LAN.

[image: image1.wmf]USERS

local

global

Oper1

Oper2

Oper3

OperA

OperB

OperC

h

data

data

Prefs

Prefs

Figure 7-1: Operator Directory Structure

The subdirectory Prefs underneath the operator's data directory is used to store segment-specific operator preferences. DII compliance XE "DII compliance" requires that segments store all operator preference data here. A segment is responsible for creating its own subdirectory (with the same name as the segment’s assigned directory XE "assigned directory") and any required files when the segment first references the preferences data. The exact pathname for the Prefs subdirectory will change each time a different operator logs in, thus segment software shall use functions from the Preferences Toolkit APIs to retrieve the correct pathname for the currently active operator account.

Account group segments define the environment variables USER_HOME XE "USER_HOME" and USER_DATA XE "USER_DATA" to point to the correct operator directories. For the example in Figure 7-1, the following assignments would be made when the user whose login account name is OperA logs in:

USER_HOME XE "USER_HOME" = /h/USERS/global/OperA

USER_DATA XE "USER_DATA" = /h/USERS/global/OperA/data

Note that USER_HOME XE "USER_HOME" is not defined to be /h/USERS/global/OperA/Scripts which is the login home directory XE "home directory" .

Segments, such as the Executive Manager XE "Executive Manager" , may need to reference menu and icon files for the operator’s currently-defined profile. However, the directory location for these files is profile-dependent and will change during a login session if the operator changes profiles. Segments must use functions contained in the Preferences Toolkit APIs to determine the current profile. The environment variable USER_PROFILE XE "USER_PROFILE" is set by the account group XE "account group" segment during login, but segments must use APIs from the Preferences Toolkit to access files or directories related to individual operators, or to determine the current user profile.

DII compliance XE "DII compliance" requires adherence to the following:

· Segments shall create subdirectories as needed under the operator’s Prefs subdirectory for storing operator-specific data.

· Segments must work in an environment in which accounts are created and deleted. This requires that a segment create and initialize missing operator-specific data files.

· Account group segments shall set the environment variables USER_HOME XE "USER_HOME" , USER_DATA XE "USER_DATA" , and USER_PROFILE XE "USER_PROFILE" . (See footnote below. Account groups must still set USER_PROFILE in the interim to support legacy usage.) No other segment shall set or alter these environment variables.

· Segments shall determine the operator’s directory and profile exclusively through the Preferences Toolkit APIs or the environment variables USER_HOME XE "USER_HOME" , USER_DATA XE "USER_DATA" , and USER_PROFILE XE "USER_PROFILE" .

5.3 Segment Prefixes and Reserved Symbols
Each segment is assigned a unique subdirectory underneath /h called the segment’s assigned directory XE "assigned directory" . The assigned directory serves to uniquely identify each segment, but it is too cumbersome for use in naming public symbols. Therefore, each segment is also assigned a 1-6 character alphanumeric string called the segment prefix XE "segment prefix" . The segment prefix is used for naming environment variables and things such as public APIs and public libraries where naming conflicts with other segments must be avoided. All segments shall prefix their environment variables with segprefix_ where segprefix is the segment’s assigned prefix. For example, the Security Administrator account group XE "account group" segment is assigned the segment prefix SSO. All environment variables for this segment are therefore prefixed with the string “SSO_”.

The segment prefix XE "segment prefix" is also used to uniquely name executables and shared libraries. All COE-component segments shall use the segment prefix to name executables and it is strongly recommended that all segments follow the same convention. For example, a proper executable for the Security Administrator account group XE "account group" is SSOSetClassif. A properly named shared library would be SSOSampleLib.lib. This approach simplifies the task of determining the files that go with each segment and reduces the probability of naming conflicts.

Note:
Use the segment prefix XE "segment prefix" inside application code in situations where it is important to distinguish one segment from another. For example, when audit information is written to the security audit log, the segment prefix is also written to the audit log to allow determination of which application module generated the audited event. The same advice applies to all audit logs, including those maintained by the operating system or a DBMS.

It is sometimes convenient for segments to share the same segment prefix XE "segment prefix" . This is true for aggregate segments or for segments produced by the same contractor. The COE allows segments to share the same segment prefix; however, the burden for avoiding naming conflicts is placed on the segment developer.

Note:
This means that segment prefix XE "segment prefix" es are not guaranteed to be unique and therefore cannot be used to uniquely identify a segment. Each segment shall have a uniquely assigned directory XE "assigned directory" and segment name. Therefore, the name or directory in combination can be used to uniquely identify a segment. There are situations where it is more convenient to specify a segment’s assigned directory rather than its name, such as in COEFindSeg XE "COEFindSeg" , because the directory name is typically shorter than the segment name and this fact can be useful in speeding up character string comparisons in segment searches. Furthermore, because the segment directory will not have embedded blanks but the segment name may, the segment name will not necessarily be the same as the assigned directory name.

The segment prefix XE "segment prefix" es shown in Table 7-1 are reserved.

Segment Prefix
Applicability

CBIF
Character-Based I/F account group XE "account group" segment

CDE
Common Desktop Environment segment

COE
Common Operating Environment segment

DBA
Database Administrator account group XE "account group" segment

DCE
Distributed computing environment segment

DII
Defense Information Infrastructure segment

ECEDI
Electronic Commerce/Electronic Data Interchange segment

ECPN
Electronic Commerce Processing Node segment

EM
Executive Manager XE "Executive Manager" segment

GCCS
Global Command and Control System segment

GCSS
Global Command Support System segment

INFRMX
Informix COTS segment

JCALS
Joint Computer-Aided Acquisition and Logistics Support segment

JMCIS
Joint Maritime Command Information System segment

JMTK
Joint Mapping Toolkit segment

MOTIF
Motif

NIPS
Navy NIPS segment

NT
Generic NT segment

ORACLE
Oracle COTS segment

OSS
Navy OSS segment

SA
System Administrator account group XE "account group" segment

SCO
SCO-UNIX segment

SSO
Security Administrator account group XE "account group" segment

SYBASE
Sybase COTS segment

TIMS
Navy TIMS segment

UB
Navy Unified Build segment

UNIX
UNIX operating system

USER
prefix for operator-specific items

WIN
generic Windows segment

WIN95
Windows 95 segment

WINNT
Windows NT segment for 80x86 platforms

XWIN
X Windows

Table 7-1: Reserved Segment Prefixes XE "Reserved Segment Prefixes"
The COE sets five environment variables that must not be confused with the USER prefix or the segment home environment variable XE "home environment variable" .

· The HOME XE "HOME" environment variable is set by the operating system to be the login directory; that is, the login directory as contained in the UNIX /etc/passwd file. This will normally point to a Scripts subdirectory while the segment “home” environment variable (segprefix_HOME) is one level up from HOME.

· The USER environment variable is set by the operating system to be the login account name and does not refer to a directory as does the USER prefix. Thus, USER_HOME XE "USER_HOME" will be /h/USERS/$USER.

· The environment variables LOG_NAME XE "LOG_NAME" , LOGNAME XE "LOGNAME" , and LOGIN_NAME XE "LOGIN_NAME" are equivalent to the USER environment variable
, but are not always present on every system.

The COE also includes a number of predefined environment variables that are required by UNIX, NT, X Windows, and other COTS software. These environment variables are either set automatically by the operating system or they must be set by an account group XE "account group" segment. Other segments shall not alter these environment variables except as permitted by environment extension files XE "environment extension files" (e.g., extending the path environment variable).

Table 7-2 lists various important environment variables that are set by the applicable account group XE "account group" , the parent COE-component segment, or the COE installation tools.

The COE sets environment variables MACHINE_CPU XE "MACHINE_CPU" and MACHINE_OS XE "MACHINE_OS" to define the hardware and operating system being used. This allows scripts and descriptors to perform operations that are dependent on the hardware or operating system lists the possible values set by the COE which either may be used as constants in #ifdef constructs within descriptor files or as possible values for the appropriate environment variable (e.g., MACHINE_CPU).

Note that the environment variables (e.g., MACHINE_CPU XE "MACHINE_CPU") will have one and only one value, but several constants may be defined for use within the descriptor files. For example, if the hardware platform is an HP715 running HP-UX 9.01, the MACHINE_CPU environment variable will be set to HP715, MACHINE_OS XE "MACHINE_OS" will be set to HPUX, while the constants HP, HP715, HPUX will be defined for use in descriptors.

Environment Variable
Usage

COE_SYS_NAME
string containing system name (e.g., “GCCS”)

+COE_TMPSPACE XE "COE_TMPSPACE"
location of temporary space

*DATA_DIR XE "DATA_DIR"
/h/data

DISPLAY
current display surface (UNIX only)

HOME
user’s login directory

+INSTALL_DIR XE "INSTALL_DIR"
absolute pathname to where segment was installed

*LD_LIBRARY_PATH
default location of shared X and Motif libraries (UNIX only)

*LOGNAME XE "LOGNAME"
user’s login account name

*LOG_NAME XE "LOG_NAME"
user’s login account name

*LOGIN_NAME XE "LOGIN_NAME"
user’s login account name

*MACHINE_CPU XE "MACHINE_CPU"
CPU type derived from uname -m

*MACHINE_OS XE "MACHINE_OS"
Operating system derived from uname -s -r

path
list of paths to search to find an executable

SHELL
shell used (e.g., /bin/csh) (UNIX only)

+SYSTEM_ROOT XE "SYSTEM_ROOT"
absolute pathname to where Windows is installed (applicable to PC-based COE only)

TERM
terminal type (UNIX only)

*TMPDIR XE "TMPDIR"
location of the system-defined temporary directory

*TZ
time zone information (UNIX only)

USER
user’s login account name

USER_DATA XE "USER_DATA"
user’s data directory under /h/USERS/local or /h/USERS/global

USER_HOME XE "USER_HOME"
user’s home directory XE "home directory" under /h/USERS/local or /h/USERS/global

USER_PROFILE XE "USER_PROFILE"
user’s current profile under /h/USERS/local/Profiles XE "Profiles" or /h/USERS/global/Profiles

*XAPPLRESDIR XE "XAPPLRESDIR"
/h/data/app-defaults XE "app-defaults" (UNIX only)

*XENVIRONMENT XE "XENVIRONMENT"
/h/data/app-defaults XE "app-defaults" /COEBaseEnv (UNIX only)

*XFONTSDIR XE "XFONTSDIR"
/h/data/fonts XE "fonts" (UNIX only)

Legend:
*
Environment variables set by the parent COE-component segment.

+
Environment variables set by the COE installation tools. These are defined only at installation time.

All remaining environment variables are set by the applicable account group XE "account group" segment.

Table 7-2: COE-Related Environment Variables XE "Environment Variables"
MACHINE_CPU XE "MACHINE_CPU" Environment Variable

Constant
Platforms for Which Defined

DEC
DEC Alpha platforms

HP700
HP 700 series platforms

HP712
HP712 platforms

HP715
HP 715 platforms

HP750
HP 750 platforms

HP755
HP 755 platforms

IBM
IBM RISC 6000 platforms and PowerPC

PC386
Intel 80386 platforms

PC486
Intel 80486 platforms

PENTIUM
Intel Pentium platforms

SGI
Silicon Graphics platforms

SPARC
Sun Sparc platforms

SUN4
Sun 4 platforms

MACHINE_OS XE "MACHINE_OS" Environment Variable

Constant
Platforms for Which Defined

AIX
IBM RISC 6000 platforms and PowerPC

OSF1
DEC Alpha platforms

HPUX
all HP-UX platforms

IRIX
Silicon Graphics platforms

NT
all NT platforms

SOL
all Solaris platforms

WIN95
all Windows 95 platforms

Miscellaneous Constants

Constant
Platform for Which Defined

DEC
all DEC platforms, regardless of OS

HP
all HP platforms, regardless of OS

IBM
all IBM platforms, regardless of OS

PC
all 80x86 platforms, regardless of OS

SGI
all SGI platforms, regardless of OS

SPARC
all Sun Sparc platforms, regardless of OS

6.4 Reserved Prefixes, Symbols, and Files

The segment prefixes listed as reserved in Chapter 5 are also reserved in the NT-based COE. The following segment prefixes are reserved and are specific to the NT-based COE:

NT
Generic NT segments

WIN
Generic Windows segments

WIN95
Windows 95 segments

WINNT
Windows NT segment for 80x86 platforms

The environment variables listed as reserved in Chapter 5 are also reserved in the NT-based COE. Segments shall not create environment variables with the same name as any reserved environment variable. The following have no meaning in the NT-based COE, and are not guaranteed to be set:

DISPLAY XE "DISPLAY"
LD_LIBRARY_PATH XE "LD_LIBRARY_PATH"
SHELL XE "SHELL"
TERM XE "TERM"
TZ XE "TZ"
XAPPLRESDIR XE "XAPPLRESDIR"
XENVIRONMENT XE "XENVIRONMENT"
XFONTSDIR XE "XFONTSDIR"
All remaining environment variables listed in Chapter 5 are also defined for the NT-based COE.

Appendix B: Compliance Checklists
2-4 NT is configured to use the NTFS file system for files stored on hard disks. (Note: NT uses the FAT file system for floppy diskettes. Such usage is generally transparent to applications. However, NTFS is required on the hard disk for security reasons.)

5-8 All directory and filenames contain only printable, non-blank, standard ASCII characters.

5-16 (NT) All segment subkeys are named with the segment prefix.

5-17 (NT) The segment supports UNC filenames.

5-42 The segment’s HTML files are in the segment’s $DATA_DIR XE "DATA_DIR"

 XE "$DATA_DIR" /local/SegDir/pub directory.

5-47 The segment uses relative pathnames for files within the segment.

5-48 The segment does not use the “~” character, for UNIX or its NT equivalent, for referencing pathnames in environment extension files XE "environment extension files" which become a part of the global runtime environment.

5-49 The segment does not alter any reserved symbols from the I&RTS Chapter 5 unless authorized to do so by the DII COE Chief Engineer.

5-58 If a parent COE-component segment, the following environment variable XE "environment variable" s (as appropriate for a UNIX versus NT environment) are automatically defined as specified by this document:

DATA_DIR XE "DATA_DIR"

LD_LIBRARY_PATH XE "LD_LIBRARY_PATH"

LOGNAME XE "LOGNAME"

LOG_NAME XE "LOG_NAME"

LOGIN_NAME XE "LOGIN_NAME"

MACHINE_CPU XE "MACHINE_CPU"

MACHINE_OS XE "MACHINE_OS"

path XE "path"

TMPDIR XE "TMPDIR"

TZ XE "TZ"

XAPPLRESDIR XE "XAPPLRESDIR"

XFONTSDIR XE "XFONTSDIR"

XENVIRONMENT XE "XENVIRONMENT"
5-50 The segment does not override or alter any environment variable XE "environment variable" that it doesn’t create. The segment may extend environment variables set by the affected account group XE "account group" through environment extension files XE "environment extension files" .

5-60 The environment settings from /h/COE/Scripts are automatically included in the runtime environment of the account group XE "account group" being created. (In UNIX this may be accomplished by “sourcing” /h/COE/Scripts/.cshrc.COE.)

5-65 The following environment variable XE "environment variable" s, as appropriate for NT versus UNIX, are defined:

COE_SYS_NAME XE "COE_SYS_NAME"

DISPLAY XE "DISPLAY"

HOME XE "HOME"

path XE "path"

SHELL XE "SHELL"

TERM XE "TERM"

USER XE "USER"

USER_HOME XE "USER_HOME"

USER_DATA XE "USER_DATA"

USER_PROFILE XE "USER_PROFILE"
5-67 (NT) The segment establishes any required global environment settings in the registry XE "registry" .

5-79 (NT) Unless a COTS segment, the segment uses the Processes XE "Processes" descriptor to create boot time processes. It does not set the Run XE "Run" or RunOnce XE "RunOnce" keys underneath CurrentVersion XE "CurrentVersion" .

6-10 The segment does not use directories with different names than specified in Chapter 5 to fulfill the purpose of Scripts, bin, data, etc. (progs and libs are acceptable for this level for as long as the COE tools support them.)

6-36 The segment does not create any environment variable XE "environment variable" s or other public symbols with the same name as any environment variables listed as reserved in the I&RTS.

6-37 Shared libraries (UNIX) and DLLs (NT) provided by the segment are in the segment’s bin subdirectory. The SharedFile XE "SharedFile" descriptor is used to define them, and they are named using the segment prefix convention.

6-44 (NT) The segment uses relative pathnames or shortcuts to reference files within the segment.

6-45 (NT) The segment stores its DLL files in the segment’s bin subdirectory.

7-14 Excepting COTS segments, all environment variable XE "environment variable" s are named with the segment prefix unless approved by the Chief Engineer. (The Chief Engineer may authorize “grandfathering” of certain environment variables.)

7-31 The segment does not include any environment variable XE "environment variable" s that could be derived from an already defined environment variable.

7-32 Segment references to global and local data are done through the $DATA_DIR XE "DATA_DIR"

 XE "$DATA_DIR" environment variable XE "environment variable" .

8-5 All public symbols are named with the segment prefix naming convention.

8-6 All directory and file names begin with an alphanumeric character.

8-7 The segment follows the convention that data owned by the segment under $DATA_DIR XE "DATA_DIR"

 XE "$DATA_DIR" is in the form $DATA_DIR/local/segdir/data and $DATA_DIR/global/segdir/data where segdir is the segment’s home directory name.

8-5 The segment adds no more than one “home” environment variable XE "environment variable" to the global environment.

8-6 All executables and public symbols are named segprefix_name, where segprefix is the assigned segment prefix.

8-7 (NT) Local environmental settings are established through an LOCALENV.BAT file in the segment's Scripts subdirectory.

8-11 Operator data is located through the Preferences APIs.

8-12 The current operator profile is obtained through the Preferences APIs.

2.1.1 Purpose

The purpose of this section is to specify the Joint Technical Architecture (JTA) government and commercial information processing standards the DoD will use to develop integrated, interoperable systems that directly or indirectly support the Warfighter.

Information processing standards support the objectives of reducing cost and time of development, easing software integration and maintenance, and improving interoperability. The primary mechanism is the concept of a Common Operating Environment (COE) that provides a reusable set of common software services via standard application program interfaces (APIs). By building modular applications that use a common software infrastructure accessed through a stable set of APIs, as well as a standard integration approach, developers will be able to "plug and play" their applications into a centrally maintained infrastructure. The use of the standard APIs allows the COE and mission applications to be quickly integrated, and updated relatively independent of each other. The COE concept allows developers to concentrate their efforts on building mission area applications rather than building duplicative system service infrastructure software. Common standards, such as SQL to communicate with relational database management systems and Computer Graphics Metafile (CGM) to store graphics, support the objective of interoperability. Systems developed to these standards will be able to share services (retrieve authorized data from each other's databases) and data (such as an overlay). The use and evolution of the COE concept and the JTA standards it embodies, will advance the goal of building systems that are compatible, while minimizing program costs through systematic software reuse.

2.2.2.1.4.1 Document Interchange

These services provide the specifications for encoding data and the logical and visual structure of electronic documents. The following standards are mandated for document interchange:

· ISO 8879: 1986, Standard Generalized Markup Language (SGML), for the production of documents which are intended for long-term storage and electronic dissemination for viewing in multiple formats. SGML formalizes document markup, making the document system and processing independently. It is an architecture-free and application-free language for managing structures and is designed for full multi-media database publishing. SGML is a meta-language, providing the rules for designing and applying a system of markup tags rather than the specific set of tags.

· RFC-1866: 1995, Hypertext Mark-up Language (HTML), Internet Version 2.0, - Interchange format used by the WWW for hypertext format and embedded navigational links.

Table 2-1 identifies file formats for the interchange of common document types such as text documents, spreadsheets, and presentation graphics. Some of these formats are controlled by individual vendors, but all of these formats are supported by products from multiple companies. In support of the standards mandated in this section, Table 2-1

table 2-1

identifies conventions for file name extensions for documents of various types. The following file formats are mandated, but not the specific products mentioned:

· All applications acquired or developed for the production of documents shall be capable of generating at least one of the formats listed in Table 2-1 for the appropriate document type.

· All organizations shall at a minimum be capable of reading and printing all of the formats listed below for the appropriate document type.

Table 2-1 - Document Interchange Formats

PRIVATE
Document Type
Standard/Vendor Format
Recommended File Name Extension
Reference

Plain Text
ASCII Text
.txt

Compound
Acrobat 2.0
.pdf
Vendor

Document*
HTML 2.0
.htm
IETF

MS Word 6.0
.doc
Vendor

Rich Text Format
.rtf
Vendor

WordPerfect 5.2
.wp5
Vendor

Briefing -
Freelance Graphics 2.1
.pre
Vendor

Graphic Presentation
MS Powerpoint 4.0
.ppt
Vendor

Spreadsheet
Lotus 1-2-3 Release 3.x
.wk3
Vendor

MS Excel 5.0
.xls
Vendor

Database
Dbase 4.0
.dbf
Vendor

Note: * - Compound documents contain embedded graphics, tables, and formatted text. OLE linking complicates document interchange. Note that not all special fonts, formatting, or features supported in the native file format may convert accurately.

Note: Future versions of the JTA will address engineering and technical data standards such as Continuous Acquisition and Life-Cycle Support (CALS).

2.2.2.1.4.2 Graphics Data Interchange

These services are supported by device-independent descriptions of the picture elements for vector and raster graphics. The ISO Joint Photographic Expert Group (JPEG) standard describes several alternative algorithms for the representation and compression of raster images, particularly for photographs. The standard does not specify an interchange format for JPEG images, which led to the development of the JPEG File Interchange Format (JFIF) format. JFIF is a de facto standard for exchanging images over the internet. The following standards are mandated:

· FIPS Pub 128-1: 1993, Computer Graphics Metafile (CGM)- Interchange format for vector graphics data

· JPEG File Interchange Format (JFIF), Version 1.02, C-Cube Microsystems for raster graphics data encoded using the ISO 10918-1: 1994, Joint Photographic Expert Group (JPEG) algorithm.

2.2.2.1.4.3 Geospatial Data Interchange

For mapping, charting, and geodesy (MC&G) services, collectively known as geospatial services, the following standards are mandated:

· MIL-STD-2411, Raster Product Format (RPF) - DoD Military Standard used by the Defense Mapping Agency (DMA) to format raster-based digital products (e.g., Compressed Arc Digitized Raster Graphics (CADRG), Controlled Image Base (CIB), and Digital Point Positioning Data Base (DPPDB)), and is based on National Imagery Transmission Format Standard (NITFS) (MIL-STD-2500A) described below.

· MIL-STD-2407, Interface Standard for Vector Product Format (VPF) - DoD format for DMA's vector-based products used by geographic information system (GIS) and other DoD systems. VPF standard products include Vector Map (VMap) Levels 0-2, Urban Vector Map (UVMap), Digital Nautical Chart (DNC), VMap Aeronautical Data (VMap AD), Vector Product Interim Terrain Data (VITD), Digital Topographic Data (DTOP), Littoral Warfare Data (LWD), and World Vector Shoreline Plus (WVS+).

· MIL-STD-2401, World Geodetic System 84 (WGS-84) 21 March 1994 - DoD's standard global reference system developed by the DMA. WGS-84 is employed by the NAVSTAR Global Positioning System (GPS) and modern weapons and systems. Latitude and longitude data shall use WGS-84 in accordance with CJCSI 3900.01, and standard coordinate data elements as discussed in Section 4

· Section 4

.

· For all other MC&G services (e.g., Digital Terrain Elevation Data (DTED), Digital Bathymetric Database (DBDB)) not captured in the above standards the products in DMAL 805-1A, DMA List of Products and Services, March 1994, shall be used.

2.2.2.1.4.4 Imagery Data Interchange

The NITFS is a DoD and Federal Intelligence Community suite of standards for the exchange, storage, and transmission of digital imagery products. NITFS provides a package containing information about the image, the image itself, and optional overlay graphics. It was developed and mandated by ASD Command, Control, Communications, and Intelligence (C3I) for the dissemination of digital imagery from overhead collection platforms. Guidance on applying the suite of standards can be found in MIL-HDBK-1300A. The following standards are mandated for secondary imagery dissemination:

· MIL-STD-2500A, National Imagery Transmission Format (Version 2.0) for file format

· MIL-STD-188-196, Bi-Level Image Compression

· MIL-STD-188-199, Vector Quantization Decompression

· ANSI/ISO 8632: 1992, Computer Graphics Metafile (CGM) as profiled by FIPS 128 and MIL-STD-2301

· ISO/IEC 10918-1: 1994, Joint Photographic Experts Group (JPEG) as profiled by MIL-STD-188-198A. Although the NITFS uses the same ISO JPEG algorithm as mandated in section 2.2.2.1.4.2, the NITFS file format is not interchangeable with the JFIF file format.

Communication protocols for transmission of imagery are specified in Section 3

2.2.2.1.5 Graphic Services

These services support the creation and manipulation of graphics. They include device-independent, multidimensional graphic object definition, and the management of hierarchical database structures containing graphics data. The following standards are mandated for non-COTS graphics development:

· ISO 7942 as profiled by FIPS Pub 120-1 (change notice 1): 1991, Graphical Kernel System (GKS) - for 2-D graphics

· ISO 9592: 1989, as profiled by FIPS Pub 153, Programmers Hierarchical Interactive Graphics Systems (PHIGS) - for 3-D graphics

· ISO/IEC 9636: 1994, Information Technology-Computer Graphics-Interfacing (CGI) Techniques for Dialogue with Graphics Devices.

COMPUTERNAME

ComSpec
HOMEDRIVE
HOMEPATH
HOMESHARE
LOGONSERVER
NUMBER_OF_PROCESSORS
OS
Os2LibPath
Path
PROCESSOR_ARCHITECTURE
PROCESSOR_IDENTIFIER

PROCESSOR_LEVEL
PROCESSOR_REVISION
PROMPT
SystemDrive
SystemRoot
TEMP
USERDOMAIN
USERNAME
USERPROFILE
windir
Variable

Description

ComSpec
Directory for CMD.EXE

LibPath
Directories to search for dynamic link libraries (DLLs)

OS2LibPath
Directories to search for dynamic link libraries (DLLs) under OS/2 subsystem

Path
Directories to search for executable program files

WinDir
Directory in which Windows NT is installed

PRIVATE
Environment Variables in Windows NT

Last reviewed: March 24, 1997
Article ID: Q100843

The information in this article applies to:

· Microsoft Windows NT operating system version 3.1
· Microsoft Windows NT Advanced Server version 3.1
· Microsoft Windows NT Server version 4.0
· Microsoft Windows NT Workstation version 4.0
There are three levels of environment variables in Windows NT; the system environment variables, the user environment variables, and the environment variables that are set in the AUTOEXEC.BAT file. There are also some predefined environment variables that are set when the user logs on. This article discusses the following topics:

· System environment variables
· User environment variables
· AUTOEXEC.BAT environment variables
· How environment variables are set
· How the path is built
· Changing user environment variables using control panel
System Environment Variables

System environment variables can be viewed from Control Panel by choosing the System icon. These variables are always set no matter who logs on and they cannot be changed by any user.

There are a few additional predefined environment variables that are set when the user logs on that do not appear in the System dialog box:

 USERNAME

 USERDOMAIN

 NTVERSION (not available in Windows NT 4.0 anymore)

 WINDIR

 OS

 PROCESSOR_ARCHITECTURE

 values: x86, MIPS or ALPHA

 PROCESSOR_LEVEL

 values for x86: 3, 4, 5

 values for MIPS: 3000, 4000

 values for ALPHA: 21064

 HOMEPATH

 HOMEDRIVE

 HOMESHARE

 These three environment variables are set based on the value of

 the home directory. The user's home directory is specified in

 User Manager (Choose Profile and Properties). If the home

 directory uses universal naming conventions (UNC), then they

 will have the following values:

 HOMESHARE=\\<server name>\<share name>

 HOMEPATH=\<path>

 HOMEDRIVE=<drive letter>:

 If the home directory is a local path such as c:\nt then they

 will look like this:

 HOMEDRIVE=c:

 HOMESHARE=

 HOMEPATH=\nt

All above environment variables are always present and therefore may be used in log on scripts.

User Environment Variables

User environment variables can be viewed from Control Panel as well. The user may add, delete or modify the environment variables in the User Environment Variables for User field. These variables take precedence over system environment variables. The user path is appended to the system path.

AUTOEXEC.BAT Environment Variables

All environment variables and the paths set in the AUTOEXEC.BAT file are used to create the Windows NT environment. Any paths in the AUTOEXEC.BAT file are append to the system path.

How Environment Variables Are Set

Environment variables are set in the following order:

· System variables
· AUTOEXEC.BAT variables
· User variables
How the Path Is Built

The Path is constructed from the system path, which can be viewed in the System Environment Variables field in the System dialog box. The User path is appended to the system path. Then the path from the AUTOEXEC.BAT file is appended.

Note: The environment variables LibPath and Os2LibPath are built the same way (system path + user path + AUTOEXEC.BAT path).

Changing User Environment Variables Using Control Panel

User environment variables can be added, changed or deleted from Control Panel. There is no need to reboot after making any of these changes. Changes take effect immediately after exiting the System dialog box.

The next application you start will use the new settings. All other applications running before the changes were made will not recognize the changes.

� For UNIX, the COE deletes all files in the temporary directory when the system is rebooted. This does not occur for NT system. Developers should make it a habit to delete all temporary files when they are finished and not rely upon the operating environment to delete them. This will ease porting problems and is a matter of good programming practice.

� Symbolic links are called shortcuts in NT. They are not identical concepts but are sufficiently similar for this discussion.

� USER_PROFILE� XE "USER_PROFILE" � is preserved for backwards compatibility only. The COE allows there to be multiple active profiles so that an environment variable may not be the most appropriate way to determine the current user profile. Developers must not directly access this environment variable because its use may be phased out in a future release.

� USER is preserved for backwards compatibility with legacy pre-POSIX systems. LOGNAME� XE "LOGNAME" � is the proper POSIX equivalent.

i

