Defense Information Infrastructure (DII)

Common Operating Environment (COE)

NT Advisory Group (NTAG)

Reserved File Name Extensions

Draft Version 1.0

3 April 1998

Prepared by:

E. L. Krum�Forward

This document is submitted by the NT Advisory Group for review by DISA/JIEO Center for Computer Systems Engineering DII Computer Engineering Department and the DII COE Community.

Comments and recommendations for change may be forwarded for review and incorporation to:

	NT Advisory Group

	Attention: Eric L. Krum

	Building 1704, Room 114

	Hanscom AFB, MA 01731

	Email: krumer@hanscom.af.mil

�

�toc \o "1-3" �1.	Introduction	�pageref _Toc417707265 \h ��1�

1.1	Background	�pageref _Toc417707266 \h ��1�

1.2	Introduction to the issues:	�pageref _Toc417707267 \h ��1�

1.3	Problem Statement: The DII COE I&RTS states developers should follow conventional Windows usage for file extensions and shall not create root keys or subkeys outside the SOFTWARE\COE key. These two directives make it impossible for developers to create file extensions or to allow mission applications to be assigned as the application identifier for common file extensions.	�pageref _Toc417707268 \h ��2�

1.4	Purpose	�pageref _Toc417707269 \h ��2�

1.5	Scope	�pageref _Toc417707270 \h ��2�

1.6	Outline	�pageref _Toc417707271 \h ��2�

1.7	Related Documentation	�pageref _Toc417707272 \h ��3�

2.	Current I&RTS and User Interface Specifications for the DII File Extension Requirements	�pageref _Toc417707273 \h ��4�

2.1	User Specifications for the Defense Information Infrastructure (DII)	�pageref _Toc417707274 \h ��4�

2.2	Integration & Runtime Specification (I&RTS)	�pageref _Toc417707275 \h ��4�

3.	Current JTA File Extension Requirements	�pageref _Toc417707276 \h ��5�

4.	Current Microsoft File Name Extensions Logo Program Requirements and the Interface Guidelines for Software Design	�pageref _Toc417707277 \h ��6�

5.	Preliminary Designed for Windows NT and Windows 98 Logo Program Requirements	�pageref _Toc417707278 \h ��8�

6.	Comparison of Reserved File Name Extension Requirements	�pageref _Toc417707279 \h ��9�

7.	Recommendations	�pageref _Toc417707280 \h ��10�

�

�1.	Introduction

The Defense Information Infrastructure (DII) Common Operating Environment (COE) serves as an open and flexible architecture that promotes customized functionality and enhances the capability of the development community to create applications for DoD and Federal systems. The Defense Information Systems Agency (DISA) is responsible for the DII COE.

When the DII COE was introduced, a methodology for mission application development was implemented. A methodology that provides a flexible and customizable environment for developers while at the same time preserving configuration management and providing users a common operating environment. With the adoption of the Microsoft Windows New Technology (NT)�symbol 226 \f "Symbol" \s 12�â� Operating Systems (OS) by the DII COE came some fundamental differences in OS services, file systems and file naming scheme’s from the prior UNIX based COE.

1.1	Background

On 13 February, 1998 the NTAG published the NTAG Work Plan, assigning the tasks required to support the implementation of the NTAG’s recommendations to DISA for the use of NT in the COE. The task; “3.3, DII COE Reserved File Name Extensions” concerned the implementation of Reserved File Name Extensions and how they are to be accommodated into the NT registry database. Further, determine if the Logo Program’s process for controlling reserved file extensions needs to be changed to accommodate independent segment development.

Research was conducted in the following areas:

Current COE guidance in the Integration & RunTime Specification (I&RTS)

User Interface Specifications for DISA

Current NT guidance in The Windows Interface Guidelines for Software Design

Guidance in the Windows NT and Windows 95 Logo Program

Guidance in the Designed for Microsoft Windows Logo, for Windows NT and Windows 98

1.2	Introduction to the issues:

Windows NT operations are heavily dependent of the use of file extensions. File extensions:

Launch an application with a specific file by selecting a file icon

Control file management

List and use files in a users Documents folder under the START menu

Control new file creation

Control dragging and drop files to launch, print, view, etc.

Directly map to an application identifier

For a system user to perform the operations listed above the file extension must be registered. To register a file extension a root key must be created in HKEY_CLASSES_ROOT.

The process and guidance concerning the use of file extensions for COE NT systems is directed in Chapter 6 of the I&RTS. Paragraph 6.1 Miscellaneous, specifies “segments shall use file extensions that correspond to conventional Windows usage”. However, paragraph 5.5.2.2.1 specifies, “Segment developers shall not create root keys.”

1.3	Problem Statements:

1.3.1	No agency or organization controls a central list of reserved file extensions that is available to developers to examine for reviewing before defining a new file extension.

1.3.2	The DII COE I&RTS states developers should follow conventional Windows usage for file extensions and shall not create root keys or subkeys outside the SOFTWARE\COE key. These two directives make it impossible for developers to create file extensions or to allow mission applications to be assigned as the application identifier for common file extensions.

1.4	Purpose

The purpose of this paper is to determine if the commercially developed process of controlling file extensions could be used to enhance or replace the methodology currently used in the COE. This paper will perform a comparison between the current DII COE file extension guidance and the Microsoft Windows NT Logo Program for well behaved Windows NT client/server applications.

1.5	Scope

The scope of the tasks completed in the process of this evaluation of the Microsoft Logo Program versus the current DISA directed approach were:

Identify and describe the current DII COE I&RTS guidance as contained in version 3.0 of the I&RTS

Identify and describe the current Joint Technical Architecture (JTA) guidance as contained in version 1 of the JTA

Identify and describe the current Microsoft Logo Program as contained in the Windows NT and Windows 95 Logo Program

Identify and describe the draft Windows NT 5.0 and Windows 98 Logo Program

1.6	Outline

Section 2 provides an overview of the DII COE I&RTS and User Interface Specification for the DII guidance for file name extensions. Section 3 presents an overview of the JTA guidance for file name extensions. Section 4 presents an overview of the Microsoft Logo Program and The Interface Guidelines for Software Design guidance for file name extensions and the methodology for setting file extensions and application identifiers. Section 5 presents an overview of the preliminary Microsoft Logo Program for the next version of NT. The data presented in each section is a synopsis of the applicable document. Extracts of the applicable paragraphs and sections from each document are included in an appendix. Section 6 presents the comparison of the file extension guidance from DISA and Microsoft. Section 7 presents the recommendations for consideration by the NT Advisory Group.

1.7	Related Documentation

Designed for Microsoft® Windows NT® and Windows® 95, Logo Handbook for Software Applications, Version 3.0b, March 3, 1998

Designed for Microsoft Windows Logo Handbook for Software Applications for Windows NT and Windows 98, Microsoft Corporation, Preliminary documentation

Defense Information Infrastructure (DII), Common Operating Environment (COE), Integration and Runtime Specification (I&RTS), Version 3.0, July 1997. Joint Interoperability and Engineering Organization, Defense Information Systems Agency, CM-400-01-0401

Defense Information Infrastructure (DII) Common Operating Environment (COE), How To Segment Guide, Version 4.0, 30 December 1996, Joint Interoperability and Engineering Organization Defense Information Systems Agency, CM-400-130-01

The Windows Interface Guidelines for Software Design, Microsoft Press, 1995

User Interface Specifications for the Defense Information Infrastructure (DII), Version 3.0, February 1998, CM-400-18-05

�

2.	Current I&RTS and User Interface Specifications for the DII File Extension Requirements

2.1	User Specifications for the Defense Information Infrastructure (DII)

The DII User Specifications (Appendix D) states that to ensure portability across platforms the appropriate file extension for the content type e.g., .gif for GIF graphic files, must be used.

2.2	Integration & Runtime Specification (I&RTS)

The I&RTS (Appendix E) does not provide specific guidance concerning the creation or the use of file name extensions. Paragraph 6.1 under PC-Based Applications directs that segments shall use file extensions that correspond to conventional Windows usage. The Compliance Checklists in Appendix B directs to be level 5, compliant segments executable descriptors use the .EXE extension for executables and .BAT for batch files. To be level 6 compliant a segment must use filename extensions in accordance with standard Windows usage.

Chapter 5, paragraph 5.5.2.2.1 specifies, “Segment developers shall not create root keys.”

The use of the registry is restricted to the creation of subkeys through the use of the Registry segment descriptor. The segment descriptor creates a subkeys under:

 HKEY_LOCAL_MACHINE\SOFTWARE\COE\subkey.

Chapter 6, paragraph 6.5.7, Miscellaneous, states as an option segment developers may: As appropriate, segments should register icons for document types and provide a viewer to allow the shell to display them. This is done through the HKEY_CLASSES_ROOT registry. Refer to Microsoft documentation for the required procedures. A future COE release may provide segment descriptors to accomplish this.

The I&RTS Compliance Checklists in Appendix B states to be level 5 compliant a segment can not create a root level registry key. To be level 6 compliant a segment uses filename extensions in accordance with standard Windows usage.

�

3.	Current JTA File Extension Requirements

Common information processing standards support the objectives of easing software integration and improving interoperability. To support document and data interchange the JTA identifies file formats for the interchange of common documents. All of the file formats are controlled and managed by the use of standardized file name extensions. The JTA lists the standard formats required of all applications acquired or developed, within the DoD, for the production of documents along with their recommended file name extension.

	Document Type	Standard/Vendor 		Format		Reference				Extension

Plain Text	ASCII Text	.txt		

Compound	Acrobat 2.0	.pdf	

Document*	HTML 2.0	.htm		MS Word 6.0	.doc	

 		Rich Text Format	.rtf		

 		WordPerfect 5.2	.wp5		

Briefing -	Freelance Graphics 2.1	.pre		

Graphic Presentation	MS PowerPoint 4.0	.ppt		

Spreadsheet	Lotus 1-2-3 Release 3.x	.wk3		MS Excel 5.0 	.xls

 Database	Dbase 4.0	.dbf		�

4.	Current Microsoft File Name Extensions Logo Program Requirements and the Interface Guidelines for Software Design

The Designed for Windows NT and Windows 95 Logo Program was developed by Microsoft Corporation to identify products that are:

Tested & Reliable - The product has been tested and is fully functional on both Windows NT and Windows 95

Best User Experience – The product has been designed to provide optimum usability and to ensure a consistent, accessible user experience.

Works well with Others – The product is designed to take advantage of the latest software & hardware technologies available of Windows NT and Windows 95.

The Logo Program (Appendix A) sets the rules and operational requirements a Windows NT program must meet to ensure a user has a reliable and well-behaved program. The only direct reference to file extensions is the requirement to check the registry for the same file extension and ask the user if they want to change the default program for that particular file extension. The default program is called the application identifier. The Logo Program references developers to the “The Windows Interface Guidelines for Software Design” (Appendix C), for details in file type creation and entries required in the registry.

Common file extensions are listed in Chapter 10 of “The Windows Interface Guidelines for Software Design”. A copy of the file extension list is provided in Appendix C. Research indicates this is the only compiled list of common file extensions available and it is dated from 1995. The book recommends developers investigate extensions in order to avoid conflicts used by other applications. And recommends that utility files, with a unique extension, created by a segment that a user does not interact with directly should have the extension and an icon registered. In, addition these files should be marked as hidden via their file attribute.

A file extension must be unique in the registry and can only have one application identifier. However, the Windows NT operating system does not provide arbitration for segments/applications that use the same extensions as only one segment can control a file type at a time.

File extensions are used by the Windows NT operating System (OS) for two primary purposes:

Identify the file type

Identify the application that creates and maintains the file type

The file extension by identifying the file type presents the user and Windows NT OS with the ability to control each file through an applications icon. With that file icon the user can:

Double click the icon to start up the controlling application with the selected file open

Print the file by drag and dropping the icon on top of a printer icon

See and use the file listed under each users Document submenu

Controls listing the creation of a new file with the right mouse button

Controls the commands found on icons, including Send To, Cut, Copy, Open, Paste, Properties, Play, Edit, Print

Controls using quick view to examine the file

These are primary functions users have come to depend on in their daily operations with a Windows OS.

Files with unregistered extensions are displayed with the generic system icon. Users can select an unregistered file extension and associate the unregistered file extension with any registered file on the system. In response to this action by the user, Windows NT creates a root key entry in the HKEY_CLASSES_ROOT registry hive, identifying the file extension and its application identifier. A matching class-definition key using the same string as the application identifier subkey is also automatically created in the same hive. This class-definition key has the format of “[extension]_auto_file”. The subkey “SHELL\OPEN\COMMAND” is also automatically created under [extension]_auto_file which identifies the location of the application identifiers executable file. A default command line with a file parameter is added as the default value.

An application identifier key and class-definition key created during a Logo Program compliant segment installation would follow the requirements listed below:

HKEY_CLASSES_ROOT

	.ext = Applicationidentifier

Applicationidentifier = Type Name

The type name is the human readable form of its application identifier or class name. The type name is used to identify the objects name, behavior, or capability. And can include the following elements:

Company name – product identity

Application name - Segment name

Data Type – basic category of the object, e.g., drawing, graphic, or sound

Version – identify multiple versions of the same data type

Many other critical registry controlled functions required by a Windows NT segment go under the class-definition key. These functions have a direct impact on segment operations, however they are outside the scope of this paper.�

5.	Preliminary Designed for Windows NT and Windows 98 Logo Program Requirements

There are no additional requirements or directives, for file extensions, listed in the draft Windows NT (version 5.0) and Windows 98 Logo Program Requirements document.

�

6.	Comparison of Reserved File Name Extension Requirements

The I&RTS specifies that file extensions should follow standard Windows usage. But at the same time the I&RTS specifies that segments can not create registry root keys or subkeys outside of the COE subkey. And later in Chapter 6 the I&RTS again repeats the two premises stated above but then states that developers have the option to register icons and file types so quick view can be used. This guidance is contradictory and confusing. The Compliance Check list which is normally used to determine what is mandatory states; to be level 5 compliant no registry root keys are created and to be level 6 compliant follow standard Windows file extension usage. This leaves the impression file extensions should not be created and root registry keys should never be created.

File extensions are a corner stone of the Windows NT architecture and control how users and the NT OS utilize and control files. To provide the best user experience as outlined in The Windows Interface Guidelines for Software Design, file extensions must to be listed in the registry as a root key with an assigned application identifier. Registry entries that are not allowed under the DII COE but which any COE user can create by selecting a file and associating the file with any registered program on the system.

If segment developers can not create root keys to register new file extensions or change registry entries to align segments with known file extensions they in turn can not register a segment as an application identifier. With no application identifier, users will be unable to:

Start up the application by double clicking the file icon

Use the right mouse pop-up menu to create a new file

Drag the icon to print

Have the document automatically listed under the Documents menu

Have commands on the icon to Send To, Cut, Copy, Open, Paste, Properties, Play, Edit, Print

Quick view the file

If GOTS segments are unable to properly register file extensions there is no reason to create the functionality in the segment to handle the above functions associated with registering a Windows NT application. Windows NT DII COE users will expect the Windows NT graphical users interface to provide the same functions they use every day with COTS applications. The results of having a user associate an unregistered file extension with a segment that may not be able to handle the functions required under the logo program would result in great user frustration.

�

7.	Recommendations

The purpose of this paper was to make recommendations concerning the implementation of Reserved File Name Extensions and how the are to be accommodated into the NT registry. The below recommendations should provide the means for file extension management within the DII COE .

Create a centralized list of known file extensions that is accessible to developers.

Maintain a centralized list on known file extensions on the DII COE web server. New file extensions can be submitted for approval by the Senior Engineers approval. New extensions from popular COTS applications should be added as appropriate.

Authorize DII COE segment developers to create file extensions.

Publish in the I&RTS interim guidance and the next version of the I&RTS that developers are authorized to create file extensions and in order to avoid duplication file extension must be submitted to DISA for approval.

Require segment developers to register and control file extensions in accordance with the Microsoft Logo Program.

Publish in the I&RTS interim guidance and the next version of the I&RTS that segment developers must meet the requirements in the Microsoft Logo Program and The Windows Interface Guidelines for Software Design.

Authorize DII COE developers to create registry root keys and subkeys outside of the HKEY_LOCAL_MACHINE\SOFTWARE\COE\.

Publish in the I&RTS interim guidance and the next version of the I&RTS that developers are authorized to create registry root keys and subkeys as required to maintain well behaved Windows NT segments and to provide the best experience to users.

Require DII COE developers to create registry keys and subkeys in accordance with the Microsoft Logo Program.

To maintain control of COE segments so they can be identified by other segments upon installation and maximize the ability to local installations of the COE developers must continue to maintain the required information under SOFTWARE\COE. However, developers must

�

Key Definitions, Labeling Scheme

Common to games, accounting, and database programs. Users save “profiles” of reports, game states, etc. which have limited naming schemes. Labels may create actual file names, but the file naming behavior only vaguely represents the input of the user. Example: User may enter, “File Name Test”, but the application would save “SAV001.EXT”, or “FILAAAA.EXT” to the hard disk. These files are not intended to be accessed directly from Windows Explorer. A labeling scheme is not required to save long file names to the hard disk and is exempt from the long file name requirements.

6.2.2 Using the Registry

Required:

Native data file types (if applicable) must be registered as follows:

 [HKEY_CLASSES_ROOT]

.(file type extension)�	(Default) = REG_SZ:FileTypeID

See the “Windows Interface Guidelines for Software Design," chapter 10 (available from MS Press), for further details on registering file types and application data

Recommended:

If your program uses a file extension that is used by other applications (for example, .htm files), the installer program should check the registry and ask the user if they want to change the default program for that particular file extension.

�

Meeting the Requirements

Ask Before Reassigning File-Extension Associations

Best Practice (Designed for Microsoft® Windows® Logo)

If your program uses a file extension that is also used by other applications (for example, .htm files), the installer program should check the registry and ask the user whether to change the default program associated with that particular file extension.

�

Chapter 10, Registering File Extensions

If your application creates and maintains files, register entries for the file types that you expose directly to users and that you want users to be able to easily differentiate. For every file type you register, include at least two entries: a filename-extension key entry and an application (class) identification key entry.

If you do not register an extension for a file type, it will be displayed with the system's generic file object icon, as shown in Figure 10.1, and its extension will always be displayed. In addition, the user will not be able to double-click the file to open it. (Open With will be the icon's default command.)

�includepicture \d \z "/library/images/msdn/library/winguide/platfrm2/D5/10_01.gif"�Error! Not a valid filename.�

Figure 10.1 System-generated icons for unregistered types

The Filename Extension Key

The filename extension entry maps a filename extension to an application identifier. To register an extension, create a subkey in the HKEY_CLASSES_ROOT key using the three-letter extension (including a period) and set its value to an application identifier.

HKEY_CLASSES_ROOT�.ext = ApplicationIdentifier

For the value of the application identifier (also known as programmatic identifier or Prog ID), use a string that uniquely identifies a given class. This string is used internally by the system and is not exposed directly to users (unless explicitly exported with a special registry utility); therefore, you need not localize this entry.

Avoid assigning multiple extensions to the same application identifier. To ensure that each file type can be distinguished by the user, define each extension such that each has a unique application identifier. If you have utility files that the user does not interact with directly, you should still register an extension (and icon) for them, preferably the same extension so that they can be identified. In addition, mark them with the hidden file attribute.

The system provides no arbitration for applications that use the same extensions. So define unique identifiers and check the registry to avoid writing over and replacing existing extension entries, a practice which may seriously affect the user's existing files. More specifically, avoid registering an extension that conflicts or redefines the common filename extensions used by the system. Examples of these extensions are shown in Table 10.1.

Table 10.1 Common Filename Extensions Supported by Windows

�PRIVATE_ �Error! Bookmark not defined.�Extension�Type description��386�Windows virtual device driver��3GR�Screen grabber for MS-DOS–based applications��ACM�Audio compression manager driver��ADF�Administration configuration files��ANI�Animated pointer��AVI�Video clip��AWD�FAX viewer document��AWP�FAX key viewer��AWS�FAX signature viewer��BAK�Backed-up file��BAT�MS-DOS batch file��BFC�Briefcase��BIN�Binary data file��BMP�Picture (Windows bitmap)��CAB�Windows Setup file��CAL�Windows Calendar file��CDA�CD audio track��CFG�Configuration file��CNT�Help contents��COM�MS-DOS – based application��CPD�FAX cover page��CPE�FAX cover page��CPI�International code page��CPL�Control Panel extension��CRD�Windows Cardfile document��CSV�Command-separated data file��CUR�Cursor (pointer)��DAT�System data file��DCX�FAX viewer document��DLL�Application extension (dynamic-link library)��DOC�WordPad document��DOS�MS-DOS file (also extension for NDIS2 net card and protocol drivers)��DRV�Device driver��EXE�Application��FND�Saved search��FON�Font file��FOT�Shortcut to font��GR3�Windows 3.0 screen grabber��GRP�Program group file��HLP�Help file��HT�HyperTerminalTM file��ICM�ICM profile��ICO�Icon ��IDF�MIDI instrument definition��INF�Setup information��INI�Initialization file (configuration settings)��KBD�Keyboard layout��LGO�Windows logo driver��LIB�Static-link library��LNK�Shortcut��LOG�Log file��MCI�MCI command set��MDB�File viewer extension��MID�MIDI sequence��MIF�MIDI instrument file��MMF�Microsoft Mail message file��MMM�Animation��MPD�Mini-port driver ��MSG�Microsoft® Exchange mail document��MSN�Microsoft Network home base��NLS�Natural language services driver��PAB�Microsoft Exchange personal address book��PCX�Bitmap picture (PCX format)��PDR�Port driver��PF�ICM profile��PIF�Shortcut to MS-DOS–based application ��PPD�PostScriptTM printer description file��PRT�Printer formatted file (result of Print to File option)��PST�Microsoft Exchange personal information store��PWL�Password list��QIC�Backup set for Microsoft Backup��REC�Windows Recorder file��REG�Application registration file��RLE�Picture (RLE format)��RMI�MIDI sequence��RTF�Document (rich-text format)��SCR�Screen saver ��SET�File set for Microsoft Backup��SHB�Shortcut into a document��SHS�Scrap��SPD�PostScript printer description file��SWP�Virtual memory storage��SYS�System file��TIF�Picture (TIFFTM format)��TMP�Temporary file��TRN�Translation file��TSP�Windows telephony service provider��TTF�TrueType® font��TXT�Text document��VBX�Microsoft Visual Basic® control file��VER�Version description file��VXD�Virtual device driver��WAV�Sound wave��WPC�WordPad file converter��WRI�Windows Write document��

It is a good idea to investigate extensions commonly used by popular applications so you can avoid creating a new extension that might conflict with them, unless you intend to replace or superset the functionality of those applications.

The Application Identifier Key

The second registry entry you create for a file type is its class-definition (Prog ID) key. Using the same string as the application identifier you used for the extension's value, create a key, and assign a type name as the value of the key.

HKEY_CLASSES_ROOT�.ext = ApplicationIdentifier�ApplicationIdentifier = Type Name

Under this key, you specify shell and OLE properties of the class. Provide this entry even if you do not have any extra information to place under this key; doing so provides a label for users to identify the file type. In addition, you use this entry to register the icon for the file type.

Define the type name (also known as the MainUserTypeName) as the human-readable form of its application identifier or class name. It should convey to the user the object's name, behavior, or capability. A type name can include all of the following elements:

1.	Company Name�Communicates product identity.

2.	Application Name�Indicates which application is responsible for activating a data object.

3.	Data Type�Indicates the basic category of the object (for example, drawing, spreadsheet, or sound). Limit the number of characters to a maximum �of 15.

4.	Version�

When there are multiple versions of the same basic type, for upgrading purposes, you may want to include a version number to distinguish types.

When defining your type name, use title capitalization. The name can include up to a maximum of 40 characters. Use one of the following three recommended forms:

1.	Company Name Application Name [Version] Data Type�For example, Microsoft Excel Worksheet.

2.	Company Name-Application Name [Version] Data Type�For cases when the company name and application are the same — for example, ExampleWare 2.0 Document.

3.	Company Name Application Name [Version]�When the application sufficiently describes the data type — for example, Microsoft Graph.

These type names provide the user with a precise language for referring to objects. Because object type names appear throughout the interface, the user becomes conscious of an object's type and its associated behavior. However, because of their length, you may also want to include a short type name. A short type name is the data type portion of the full type name. Applications that support OLE always include a short type name entry in the registry. Use the short type name in drop-down and pop-up menus. For example, a Microsoft® Excel Worksheet is simply referred to as a "Worksheet" in menus.

To provide a short type name, add an AuxUserType subkey under the application's registered CLSID subkey (which is under the CLSID key).

Note �includepicture \d \z "/library/images/msdn/library/winguide/platfrm2/D5/XREF.gif"�Error! Not a valid filename.��For more information about registering type names and other information you should include under the CLSID key, see the OLE documentation included in the Win32 SDK.

HKEY_CLASSES_ROOT�.ext = ApplicationIdentifier�...�ApplicationIdentifier = Type Name�CLSID = {CLSID identifier}�...�CLSID�{CLSID identifier}�AuxUserType�2 = Short Type Name

If a short type name is not available for an object because the string was not registered, use the full type name instead. All controls that display the full type name must allocate enough space for 40 characters in width. By comparison, controls need only accommodate 15 characters when using the short type name.

Chapter 10, System Naming Conventions

Windows provides support for filenames up to 255 characters long. Use the long filename when displaying the name of a file. Avoid displaying the filename extension unless the user chooses the option to display extensions or when the file type is not registered.

Note �includepicture \d \z "/library/images/msdn/library/winguide/platfrm2/D5/XREF.gif"�Error! Not a valid filename.��The system automatically formats a filename correctly if you use the SHGetFileInfo or GetFileTitle function. For more information about these functions, see the documentation included in the Win32 SDK.

Because the system uses three-letter extensions to describe a file type, do not use extensions to distinguish different forms of the same file type. For example, if your application has a function that automatically backs up a file, name the backup file Backup of filename.ext (using its existing extension) or some reasonable equivalent, not filename.bak. The latter implies a change of the file's type. Similarly, do not use a Windows filename extension unless your file fits the type description.

Long filenames can include any character, except the following.

\ / : * ? < > | "

�

13.3.4.3 Information Labeling, Ref 3

The URL for the application defines its Web address, with the path and file portions of the address uniquely identifying each page in the application. Users frequently rely on these addresses to understand the structure of the information they are viewing. As a result, the application defines its URLs so they have readable names that reflect the nature of the information they contain. The application uses only lower-case characters in its URLs so as to minimize the risk of errors when users type an address. To ensure portability across platforms, the application includes the appropriate file extension for the content type (e.g., .gif for GIF files), uses only alphanumeric characters and underscore, hyphen, and period in its file names, and limits filename length to less than 32 characters.

NOTE: Filenames are not limited to MS-DOS format (8.3) and length since all NT systems will be formatted using NTFS, FAT is not to be used?

�

�xe "Platform and Operating System Constants"�

5.5.2.2.1 Registry (NT only)

The Registry�xe "Registry"� segment descriptor allows segments to add entries to the NT registry. It is followed by a list of keys and filenames, underneath the segment’s data/Registry subdirectory, whose contents are the key values to add to the registry. VerifySeg�xe "VerifySeg"� will generate an error if any of the files listed do not exist.

The parameters for this keyword are

	keyloc:registry description file

where keyloc is the root location in the registry to add key values found in the file registry description file. At present, keyloc may have only the value

$HKEY_LOCAL_MACHINE\SOFTWARE\COE.

Future revisions may expand the keyloc parameter.

Consider the following example.

[Registry�xe "Registry"�]

$HKEY_LOCAL_MACHINE\SOFTWARE\COE:MyEntries

This indicates that the segment contains a file named MyEntries located under the directory SegDir/data/Registry�xe "Registry"� (where SegDir is the segment’s assigned directory�xe "assigned directory"�). The contents of the file MyEntries will be added to the registry under the key

HKEY_LOCAL_MACHINE\SOFTWARE\COE\SegType�xe "SegType"�\SegDir

where SegType�xe "SegType"� is the segment’s type and SegDir is the segment’s assigned directory�xe "assigned directory"�.

Following is the format of the registry description file:

$KEY�xe "$KEY"�:key-name

$STRING�xe "$STRING"�:Name:StringValue|$BINARY�xe "$BINARY"�:Name:BinaryValue|$DWORD�xe "$DWORD"�:Name:DwordValue

where key-name is the name of the subkey to create beneath

keyloc\SegType�xe "SegType"�\SegDir

key-names may include ‘\’s to indicate that subkeys are to be created.

The $STRING�xe "$STRING"�, $BINARY�xe "$BINARY"�, and $DWORD�xe "$DWORD"� keywords signify a string, binary or double-word name/value pair that is to be maintained beneath the given key. The given Name follows the keyword and then the value follows.

At least one $KEY�xe "$KEY"� must be specified in the registry description file. Multiple $KEY’s may be specified in the registry description.

All $STRING�xe "$STRING"�, $BINARY�xe "$BINARY"�, and $DWORD�xe "$DWORD"� settings must appear at the beginning of a line. These settings are not required and if omitted the given key will be created without any name/value pairs. There may be multiple $STRING, $BINARY, and $DWORD settings per $KEY�xe "$KEY"� and the order in which they are listed is not important.

The following example is for a software segment whose segment directory is SegA. Assume that key values are in the file settings.dat located underneath the directory SegA/data/Registry�xe "Registry"�. The proper Registry descriptor entry is

[Registry�xe "Registry"�]

$HKEY_LOCAL_MACHINE\SOFTWARE\COE:settings.dat

The following are example entries for settings.dat:

$KEY�xe "$KEY"�:Analyze

$STRING�xe "$STRING"�:ControlFile:\Program\Analyze\Control.dat

$DWORD�xe "$DWORD"�:UsageCount:0

$KEY�xe "$KEY"�:Defragment

$STRING�xe "$STRING"�:ControlFile:\Program\Defragment\Control.dat

$DWORD�xe "$DWORD"�:UsageCount:0

$KEY�xe "$KEY"�:Reporting

$STRING�xe "$STRING"�:ControlFile:\Program\Report\Control.dat

$STRING�xe "$STRING"�:Example1:Callsign is Foxtrot Tango 3

$STRING�xe "$STRING"�:Example2:Response is “Spring time 3!”

$DWORD�xe "$DWORD"�:UsageCount:21

$BINARY�xe "$BINARY"�:Encoding:17

Here are several keys with no name/value pairs that also

illustrates creating subkeys

$KEY�xe "$KEY"�:Reporting\Type1

$KEY�xe "$KEY"�:Reporting\Type2

$KEY�xe "$KEY"�:Reporting\Type3

The above example creates the following registry entries:

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Analyze

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Defragment

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type1

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type2

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type3

Note that the values given for both the $DWORD�xe "$DWORD"� and $BINARY�xe "$BINARY"� parameters are given in decimal format, but will appear in hexadecimal format ($DWORD) and binary format ($BINARY) when viewed from the NT registry editor window.

The registry capability must be used with great care.

The installer tools will remove registry entries added with this segment descriptor when the segment is deleted.

Segment developers shall not create root keys.

6.1 Miscellaneous

Segments shall use file extensions that correspond to conventional Windows usage. That is, use .EXE for executables, .DLL for dynamic link libraries, .TXT for ASCII text files, etc. Note this means that NT segment descriptor files should use the .TXT extension,� but shall use the .BAT or .CMD (for batch� files), or .EXE (for compiled programs) extension for PostInstall�xe "PostInstall"�, DEINSTALL�xe "DEINSTALL"�, PreInstall�xe "PreInstall"�, and PreMakeInst�xe "PreMakeInst"�.

Segments, excepting COTS segments and in some cases shared DLLs, shall not set the Windows path environment variable. If the segment provides shared DLLs for use by other software, and if there is no alternative way for that software to locate the DLLs, the segment may add a directory to the path for those DLLs.

Segments shall use the standard Windows APIs to locate a directory for temporary disk storage. This corresponds to using /tmp in UNIX. Segments shall delete temporary files when an application terminates. Unlike the UNIX-based COE, the NT-based COE does not automatically delete files in the Windows temporary directory when the computer is rebooted. This is in keeping with current commercial usage of the Windows temporary directory.

6.5.1 File System,

Windows NT supports five file systems: FAT, VFAT, HPFS, NTFS, and CDFS. FAT (File Allocation Table) is the file system used by MS-DOS, but it is extended in both Windows 95 and Windows NT (version 3.5 and later) to support long filenames (e.g., VFAT). HPFS (High Performance File System) originated with OS/2®. NTFS (NT File System) originated with Windows NT as an improvement over both HPFS and FAT. CDFS (CDROM File System) is specific to CDROM devices.

NTFS is the file system required for the DII COE because its security architecture corrects known problems in FAT. DII-compliant systems shall be formatted to use NTFS. However, the FAT and VFAT file systems are the only available file systems for floppy disks. Therefore, the COE requires NTFS for hard disk drives, but supports FAT and VFAT for floppy drives. The type of file system in use should be transparent to most segments. When there is a choice, NTFS shall be used for hard and VFAT shall be used for floppy drives.

A further complication is that NTFS filenames use the 16-bit Unicode® character set instead of 8-bit ASCII. Unicode is a technique for representing foreign alphabets (Japanese kanji, Chinese bopomofo, Greek, etc.). NT segments are not required to create Unicode strings, but segments must be able to read filenames that may be Unicode strings. This requirement is necessary because commercial products may be distributed on media that use Unicode filenames and because Windows NT uses Unicode strings internally.

Pathnames in Windows usually include a disk drive designation (e.g., C:). The disk drive containing the desired file may be located remotely on another machine. Windows allows symbolic names, called the Universal Naming Convention (UNC), to be given to remote paths so that an application need not know the platform, disk drive, or exact path to reach a particular file. UNC pathnames start with two backslashes (\\) followed by the server name, followed by the desired pathname and filename. Segments shall support the use of UNC pathnames.

To summarize,

Segments shall support the use of long filenames. Filenames are not allowed to contain embedded spaces and should use file extensions as appropriate to conform to standard Windows usage.

Segments shall support use of UNC filenames.

Segments shall be capable of correctly interpreting Unicode strings, those representing filenames.

6.5.7 Miscellaneous

The following statements apply to all new segment development. COTS segments may not meet all mandatory requirements, but shall be documented where they do not fulfill a mandatory requirement. To the extent possible, segments should conform to the requirements stipulated by Microsoft for allowing an application to use the Windows Logo. The I&RTS fully supports the Microsoft Logo branding approach as a subset of the requirements for full DII COE compliance.

Mandatory

All hardware shall be NT-compliant, as defined by the document Microsoft Windows NT Hardware Compatibility List #4094.

Segments shall support VGA and SVGA graphics.

Segments shall be "close aware." This means that the segment must enable the Close command and periodically check the close flag through the Query Close function.

Segments shall use common control and common dialog functions contained in COMCTL32.DLL and COMDLG32.DLL.

As appropriate, segments shall support cut and paste operations through the clipboard.

As appropriate, segments shall support drag and drop operations.

Segments shall support 16x16, 32x32, and 64x64 icons.

Segments shall not use MS-DOS APIs inside a compiled program. These functions are typically interrupt-driven or depended upon specific memory addresses and are not portable. Win32 APIs only are to be used within a compiled program. Segments may use MS-DOS commands within the various installation-related batch files.

Segments shall use only Win32 APIs. Win16 APIs are not supported and shall not be used unless they are part of a COTS product for which there is no 32-bit alternative.

Segments shall not duplicate functionality already provided by Windows.

Segments shall support long filenames and UNC.

Segments shall support the use of Unicode strings.

Optional

Segment developers should run the Windows SDK tool PORTTOOL.EXE to identify potential problems with how Windows APIs are being used.

Segments should operate under both Windows NT and Windows 95. The segment should degrade gracefully if it uses APIs found only in Windows 95 while running in a Windows NT environment, and vice versa.

Segments should define the STRICT constant when compiling Windows code. This enables strict type checking during compilation.

Segments should avoid using environment variables. The registry or local INI files are preferred alternatives.

Developers are encouraged to use message crackers contained in WINDOWSX.H. Message crackers are a set of macros that make code more readable, simplify porting, and reduce the need to do type casting.

As appropriate, segments should register icons for document types and provide a viewer to allow the shell to display them. This is done through the HKEY_CLASSES_ROOT registry. Refer to Microsoft documentation for the required procedures. A future COE release may provide segment descriptors to accomplish this.

Segment Installation

Segment installation follows the same sequence as for the UNIX environment, and is defined in Chapter 5. The key

HKEY_LOCAL_MACHINE\SOFTWARE\COE

is automatically created when the DII COE kernel is loaded. As segments are installed on the NT platform, COEInstaller creates registry entries under this key corresponding to segment type as explained in subsection 6.3. That is, assuming SegDir is the segment’s directory name and SegType is the segment’s type, the installer creates the following registry key entry:

HKEY_LOCAL_MACHINE\SOFTWARE\COE\SegType\SegDir

All entries underneath this registry key are deleted automatically when the segment is deleted.

COEInstaller sets the environment variables INSTALL_DIR, MACHINE_CPU, and MACHINE_OS for use in the PreInstall.BAT (or .EXE) and PostInstall.BAT (or .EXE) descriptors. SYSTEM_ROOT is set to indicate where Windows was installed. The installer also stores the location where the segment was loaded in the subkey SegDir\SegPath. The value of this subkey includes the disk drive where the segment was loaded, but it cannot be accessed until after segment loading is completed.

It is strongly recommended that segments use the segment descriptors provided to "self-describe" the segment and allow the COEInstaller to perform the installation chores. This ensures a consistent approach for all segment installations, and avoids potential conflicts between different segment installation approaches.

NT COE Descriptors

The descriptor files defined in Chapter 5 apply to the NT-based COE as well. This section is provided as a quick reference for items that are NT-related. Refer to Chapter 5 for complete discussion of each of the descriptors discussed below.

General comments follow.

NT segments are required to use SegInfo for descriptors; that is, NT segments may not use individual descriptor files since these are obsolete. All obsolete conventions are explicitly invalid for NT segments and are flagged as errors by VerifySeg.

Pathnames must be given using ‘\’ in conformance to the Windows environment.

Segments should not need to specify a disk drive because such designations are considered to be advisory only. For backwards compatibility, when a disk drive designation is given, it and any associated pathname must be enclosed in double quotes. This is required so that the tools can distinguish between use of ‘:’ as a field delimiter for descriptor lines, or as a separator between a disk drive name and a directory pathname.

In accordance with commercial standards, executable descriptors shall have either a .EXE extension (for compiled programs) or a .BAT extension (for batch files). This applies to the "scripts" used in the installation process: DEINSTALL, PostInstall, PreInstall, and PreMakeInst. Segment descriptor files may optionally have a .TXT extension.

The SYSTEM_ROOT environment variable is set to indicate where the Windows system directory is located. This environment variable may be used in the installation-related "scripts" at install time.

Comments related to specific descriptors follow.

AcctGroup

NT account groups must omit the shell parameter. It has no meaning in Windows.

COEServices

The $GROUPS and $PASSWORDS keywords are not supported for NT platforms. VerifySeg generates a warning if a segment descriptor contains these keywords.

DEINSTALL.EXE and DEINSTALL.BAT

Chapter 5 indicates that DEINSTALL is executed prior to a segment being removed from the system. A segment that does not include a DEINSTALL descriptor is a permanent segment and may be updated, but not removed. In many situations, it is desirable for the segment to be removable, but there are no actions that DEINSTALL must perform. For this reason, the NT-based COE allows DEINSTALL to exist as a zero-length file and it may exist as a file with no extension.

FileAttribs

Because file permissions are different between the UNIX and NT environments, FileAttribs is operating system specific. The COE tool MakeAttribs, when run on an NT platform, will create a proper FileAttribs file for NT segments. C style #ifdef preprocessor statements may be used to combine a UNIX and NT FileAttribs descriptor.

Hardware

The diskname field for the $PARTITION keyword must be a disk drive name. For example, to indicate that a segment requires 20MB on the F disk drive, the proper $PARTITION statement is

$PARTITION:"F:":20480

Network

The Network descriptor is not presently supported for NT platforms. VerifySeg will issue a warning if a Network descriptor is found for an NT segment.

Processes

The $RUN_ONCE keyword identifies process that should be run the next time the system is started. This keyword requires authorization by the cognizant DOD Chief Engineer because of potential security and performance risks.

Registry

The Registry descriptor allows the segment to have the COEInstaller create registry key entries.

ReqrdScripts

Environment extension files are not supported for NT platforms. Therefore, the ReqrdScripts descriptor is not supported for NT platforms. VerifySeg will print a warning if this descriptor is present.

SegName

The $COMPANY_NAME and $PRODUCT_NAME keywords allow a COTS segment to specify company and product names for the registry. These are added by the COEInstaller, and must not be specified if the COTS product creates registry entries itself.

SharedFile

This descriptor allows the segment to identify shared DLLs.

Appendix B: Compliance Checklists

5-8 All directory and filenames contain only printable, non-blank, standard ASCII characters.

5-14 (NT) The segment creates all its subkeys underneath SegType�xe "SegType"�\SegDirName where SegType is Account Groups, COE, COTS, Patches, Data, or Software, and SegDirName is the segment's directory name.

5-15 (NT) Unless a COTS segment, the segment does not create any root keys.

5-16 (NT) All segment subkeys are named with the segment prefix.

5-67 (NT) The segment establishes any required global environment settings in the registry�xe "registry"�.

5-80 (NT) The segment’s executable descriptors use the .EXE extension for compiled executables and .BAT for batch files.

6-15 (NT) The segment uses filename extensions in accordance with standard Windows usage (TXT for ASCII files, DLL for dynamic link libraries, etc.).

�

2.1.1 Purpose

The purpose of this section is to specify the Joint Technical Architecture (JTA) government and commercial information processing standards the DoD will use to develop integrated, interoperable systems that directly or indirectly support the Warfighter.

Information processing standards support the objectives of reducing cost and time of development, easing software integration and maintenance, and improving interoperability. The primary mechanism is the concept of a Common Operating Environment (COE) that provides a reusable set of common software services via standard application program interfaces (APIs). By building modular applications that use a common software infrastructure accessed through a stable set of APIs, as well as a standard integration approach, developers will be able to "plug and play" their applications into a centrally maintained infrastructure. The use of the standard APIs allows the COE and mission applications to be quickly integrated, and updated relatively independent of each other. The COE concept allows developers to concentrate their efforts on building mission area applications rather than building duplicative system service infrastructure software. Common standards, such as SQL to communicate with relational database management systems and Computer Graphics Metafile (CGM) to store graphics, support the objective of interoperability. Systems developed to these standards will be able to share services (retrieve authorized data from each other's databases) and data (such as an overlay). The use and evolution of the COE concept and the JTA standards it embodies, will advance the goal of building systems that are compatible, while minimizing program costs through systematic software reuse.

2.2.2.1.4.1 Document Interchange

These services provide the specifications for encoding data and the logical and visual structure of electronic documents. The following standards are mandated for document interchange:

ISO 8879: 1986, Standard Generalized Markup Language (SGML), for the production of documents which are intended for long-term storage and electronic dissemination for viewing in multiple formats. SGML formalizes document markup, making the document system and processing independently. It is an architecture-free and application-free language for managing structures and is designed for full multi-media database publishing. SGML is a meta-language, providing the rules for designing and applying a system of markup tags rather than the specific set of tags.

RFC-1866: 1995, Hypertext Mark-up Language (HTML), Internet Version 2.0, - Interchange format used by the WWW for hypertext format and embedded navigational links.

Table 2-1 identifies file formats for the interchange of common document types such as text documents, spreadsheets, and presentation graphics. Some of these formats are controlled by individual vendors, but all of these formats are supported by products from multiple companies. In support of the standards mandated in this section, Table 2-1

table 2-1

identifies conventions for file name extensions for documents of various types. The following file formats are mandated, but not the specific products mentioned:

All applications acquired or developed for the production of documents shall be capable of generating at least one of the formats listed in Table 2-1 for the appropriate document type.

All organizations shall at a minimum be capable of reading and printing all of the formats listed below for the appropriate document type.

Table 2-1 - Document Interchange Formats

�PRIVATE_ �Error! Bookmark not defined.�Document Type�Standard/Vendor Format�Recommended File Name Extension�Reference��Plain Text�ASCII Text�.txt� ��Compound�Acrobat 2.0�.pdf�Vendor��Document*�HTML 2.0�.htm�IETF�� �MS Word 6.0�.doc�Vendor�� �Rich Text Format�.rtf�Vendor�� �WordPerfect 5.2�.wp5�Vendor��Briefing -�Freelance Graphics 2.1�.pre�Vendor��Graphic Presentation �MS Powerpoint 4.0�.ppt�Vendor��Spreadsheet�Lotus 1-2-3 Release 3.x�.wk3�Vendor�� �MS Excel 5.0 �.xls�Vendor��Database�Dbase 4.0�.dbf�Vendor��

Note: * - Compound documents contain embedded graphics, tables, and formatted text. OLE linking complicates document interchange. Note that not all special fonts, formatting, or features supported in the native file format may convert accurately.

Note: Future versions of the JTA will address engineering and technical data standards such as Continuous Acquisition and Life-Cycle Support (CALS).

2.2.2.1.4.2 Graphics Data Interchange

These services are supported by device-independent descriptions of the picture elements for vector and raster graphics. The ISO Joint Photographic Expert Group (JPEG) standard describes several alternative algorithms for the representation and compression of raster images, particularly for photographs. The standard does not specify an interchange format for JPEG images, which led to the development of the JPEG File Interchange Format (JFIF) format. JFIF is a de facto standard for exchanging images over the internet. The following standards are mandated:

FIPS Pub 128-1: 1993, Computer Graphics Metafile (CGM)- Interchange format for vector graphics data

JPEG File Interchange Format (JFIF), Version 1.02, C-Cube Microsystems for raster graphics data encoded using the ISO 10918-1: 1994, Joint Photographic Expert Group (JPEG) algorithm.

2.2.2.1.4.3 Geospatial Data Interchange

For mapping, charting, and geodesy (MC&G) services, collectively known as geospatial services, the following standards are mandated:

MIL-STD-2411, Raster Product Format (RPF) - DoD Military Standard used by the Defense Mapping Agency (DMA) to format raster-based digital products (e.g., Compressed Arc Digitized Raster Graphics (CADRG), Controlled Image Base (CIB), and Digital Point Positioning Data Base (DPPDB)), and is based on National Imagery Transmission Format Standard (NITFS) (MIL-STD-2500A) described below.

MIL-STD-2407, Interface Standard for Vector Product Format (VPF) - DoD format for DMA's vector-based products used by geographic information system (GIS) and other DoD systems. VPF standard products include Vector Map (VMap) Levels 0-2, Urban Vector Map (UVMap), Digital Nautical Chart (DNC), VMap Aeronautical Data (VMap AD), Vector Product Interim Terrain Data (VITD), Digital Topographic Data (DTOP), Littoral Warfare Data (LWD), and World Vector Shoreline Plus (WVS+).

MIL-STD-2401, World Geodetic System 84 (WGS-84) 21 March 1994 - DoD's standard global reference system developed by the DMA. WGS-84 is employed by the NAVSTAR Global Positioning System (GPS) and modern weapons and systems. Latitude and longitude data shall use WGS-84 in accordance with CJCSI 3900.01, and standard coordinate data elements as discussed in Section 4

Section 4

.

For all other MC&G services (e.g., Digital Terrain Elevation Data (DTED), Digital Bathymetric Database (DBDB)) not captured in the above standards the products in DMAL 805-1A, DMA List of Products and Services, March 1994, shall be used.

2.2.2.1.4.4 Imagery Data Interchange

The NITFS is a DoD and Federal Intelligence Community suite of standards for the exchange, storage, and transmission of digital imagery products. NITFS provides a package containing information about the image, the image itself, and optional overlay graphics. It was developed and mandated by ASD Command, Control, Communications, and Intelligence (C3I) for the dissemination of digital imagery from overhead collection platforms. Guidance on applying the suite of standards can be found in MIL-HDBK-1300A. The following standards are mandated for secondary imagery dissemination:

MIL-STD-2500A, National Imagery Transmission Format (Version 2.0) for file format

MIL-STD-188-196, Bi-Level Image Compression

MIL-STD-188-199, Vector Quantization Decompression

ANSI/ISO 8632: 1992, Computer Graphics Metafile (CGM) as profiled by FIPS 128 and MIL-STD-2301

ISO/IEC 10918-1: 1994, Joint Photographic Experts Group (JPEG) as profiled by MIL-STD-188-198A. Although the NITFS uses the same ISO JPEG algorithm as mandated in section 2.2.2.1.4.2, the NITFS file format is not interchangeable with the JFIF file format.

Communication protocols for transmission of imagery are specified in Section 3

2.2.2.1.5 Graphic Services

These services support the creation and manipulation of graphics. They include device-independent, multidimensional graphic object definition, and the management of hierarchical database structures containing graphics data. The following standards are mandated for non-COTS graphics development:

ISO 7942 as profiled by FIPS Pub 120-1 (change notice 1): 1991, Graphical Kernel System (GKS) - for 2-D graphics

ISO 9592: 1989, as profiled by FIPS Pub 153, Programmers Hierarchical Interactive Graphics Systems (PHIGS) - for 3-D graphics

ISO/IEC 9636: 1994, Information Technology-Computer Graphics-Interfacing (CGI) Techniques for Dialogue with Graphics Devices.

� For backwards compatibility, NT segments may omit the .TXT extension. However, this is strongly discouraged. The segment must be consistent in either always using the .TXT extension or never using it. VerifySeg�xe "VerifySeg"� will strictly fail a segment that does not follow this convention. Otherwise it will be confusing and unclear which descriptor takes precedence when a segment includes the same segment descriptor, once with the .TXT extension and once without it.

� Developers should avoid the use of batch files and use executables whenever possible. Batch files, in PC NT, will cause a command shell window to pop up while the batch file is running.

Table Of Contents

Paragraph	 Page

i

Table Of Contents

Paragraph	 Page

�page �ii�

 Reserved File Name Extensions	 4/3/98

�page �10�

 Excerpts from: “Designed for Microsoft Windows NT and Windows 95 Appendix A

 Logo Handbook for Software Applications

A-�page �1�

 Excerpts from: “Designed for Microsoft Windows Logo Appendix B

 Handbook for Software Applications for

 Windows NT and Windows 98”

B-�page �1�

 Excerpts from: “The Windows Interface Guidelines for Software Appendix C

 Design

C-�page �1�

 Excerpts from: “User Interface Specifications for the Defense Appendix D

 Information Infrastructure (DII), Version 3.0

D-�page �1�

 Excerpts from: “DII COE, Integration and Runtime Specification Appendix E

 (I&RTS)

E-�page �8�

 Excerpts from: “Joint Technical Architecture (JTA) Appendix F

F-�page �1�

